Maria Vanrell, Felipe Lumbreras, A. Pujol, Ramon Baldrich, Josep Llados, & Juan J. Villanueva. (2001). Colour Normalisation Based on Background Information..
|
Maria Vanrell. (1997). Exploring the space of behaviour of a texture perception algorithm.
|
Maria del Camp Davesa. (2011). Human action categorization in image sequences (Vol. 169). Master's thesis, , .
|
Marcos V Conde, Javier Vazquez, Michael S Brown, & Radu TImofte. (2024). NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement. In 38th AAAI Conference on Artificial Intelligence.
Abstract: 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.
|
Marcos V Conde, Florin Vasluianu, Javier Vazquez, & Radu Timofte. (2023). Perceptual image enhancement for smartphone real-time applications. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 1848–1858).
Abstract: Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.
|
Marco Cotogni, Fei Yang, Claudio Cusano, Andrew Bagdanov, & Joost Van de Weijer. (2022). Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers.
Abstract: We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Keywords: Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer
|
Marco Cotogni, Fei Yang, Claudio Cusano, Andrew Bagdanov, & Joost Van de Weijer. (2023). Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation.
Abstract: We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
|
Marco Buzzelli, Joost Van de Weijer, & Raimondo Schettini. (2018). Learning Illuminant Estimation from Object Recognition. In 25th International Conference on Image Processing (pp. 3234–3238).
Abstract: In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Keywords: Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
|
Marc Serra, Olivier Penacchio, Robert Benavente, Maria Vanrell, & Dimitris Samaras. (2014). The Photometry of Intrinsic Images. In 27th IEEE Conference on Computer Vision and Pattern Recognition (pp. 1494–1501).
Abstract: Intrinsic characterization of scenes is often the best way to overcome the illumination variability artifacts that complicate most computer vision problems, from 3D reconstruction to object or material recognition. This paper examines the deficiency of existing intrinsic image models to accurately account for the effects of illuminant color and sensor characteristics in the estimation of intrinsic images and presents a generic framework which incorporates insights from color constancy research to the intrinsic image decomposition problem. The proposed mathematical formulation includes information about the color of the illuminant and the effects of the camera sensors, both of which modify the observed color of the reflectance of the objects in the scene during the acquisition process. By modeling these effects, we get a “truly intrinsic” reflectance image, which we call absolute reflectance, which is invariant to changes of illuminant or camera sensors. This model allows us to represent a wide range of intrinsic image decompositions depending on the specific assumptions on the geometric properties of the scene configuration and the spectral properties of the light source and the acquisition system, thus unifying previous models in a single general framework. We demonstrate that even partial information about sensors improves significantly the estimated reflectance images, thus making our method applicable for a wide range of sensors. We validate our general intrinsic image framework experimentally with both synthetic data and natural images.
|
Marc Serra, Olivier Penacchio, Robert Benavente, & Maria Vanrell. (2012). Names and Shades of Color for Intrinsic Image Estimation. In 25th IEEE Conference on Computer Vision and Pattern Recognition (pp. 278–285). IEEE Xplore.
Abstract: In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.
|
Marc Serra. (2010). Estimating Intrinsic Images from Physical and Categorical Color Cues (Vol. 151). Master's thesis, , .
|
Marc Serra. (2015). Modeling, estimation and evaluation of intrinsic images considering color information (Robert Benavente, & Olivier Penacchio, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Image values are the result of a combination of visual information coming from multiple sources. Recovering information from the multiple factors thatproduced an image seems a hard and ill-posed problem. However, it is important to observe that humans develop the ability to interpret images and recognize and isolate specific physical properties of the scene.
Images describing a single physical characteristic of an scene are called intrinsic images. These images would benefit most computer vision tasks which are often affected by the multiple complex effects that are usually found in natural images (e.g. cast shadows, specularities, interreflections...).
In this thesis we analyze the problem of intrinsic image estimation from different perspectives, including the theoretical formulation of the problem, the visual cues that can be used to estimate the intrinsic components and the evaluation mechanisms of the problem.
|
Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew Bagdanov, & Joost Van de Weijer. (2022). Class-incremental learning: survey and performance evaluation. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, .
Abstract: For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.
|
Marc Masana, Tinne Tuytelaars, & Joost Van de Weijer. (2021). Ternary Feature Masks: zero-forgetting for task-incremental learning. In 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 3565–3574).
Abstract: We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.
|
Marc Masana, Joost Van de Weijer, Luis Herranz, Andrew Bagdanov, & Jose Manuel Alvarez. (2017). Domain-adaptive deep network compression. In 17th IEEE International Conference on Computer Vision.
Abstract: Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
|
Marc Masana, Joost Van de Weijer, & Andrew Bagdanov. (2016). On-the-fly Network pruning for object detection. In International conference on learning representations.
Abstract: Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. We show that removing units which have near-zero activation in the image allows us to significantly reduce the number of parameters in the network. Results on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of units in some fully-connected layers can be entirely eliminated with little change in the detection result.
|
Marc Masana, Idoia Ruiz, Joan Serrat, Joost Van de Weijer, & Antonio Lopez. (2018). Metric Learning for Novelty and Anomaly Detection. In 29th British Machine Vision Conference.
Abstract: When neural networks process images which do not resemble the distribution seen during training, so called out-of-distribution images, they often make wrong predictions, and do so too confidently. The capability to detect out-of-distribution images is therefore crucial for many real-world applications. We divide out-of-distribution detection between novelty detection ---images of classes which are not in the training set but are related to those---, and anomaly detection ---images with classes which are unrelated to the training set. By related we mean they contain the same type of objects, like digits in MNIST and SVHN. Most existing work has focused on anomaly detection, and has addressed this problem considering networks trained with the cross-entropy loss. Differently from them, we propose to use metric learning which does not have the drawback of the softmax layer (inherent to cross-entropy methods), which forces the network to divide its prediction power over the learned classes. We perform extensive experiments and evaluate both novelty and anomaly detection, even in a relevant application such as traffic sign recognition, obtaining comparable or better results than previous works.
|
Marc Masana, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). On Class Orderings for Incremental Learning. In ICML Workshop on Continual Learning.
Abstract: The influence of class orderings in the evaluation of incremental learning has received very little attention. In this paper, we investigate the impact of class orderings for incrementally learned classifiers. We propose a method to compute various orderings for a dataset. The orderings are derived by simulated annealing optimization from the confusion matrix and reflect different incremental learning scenarios, including maximally and minimally confusing tasks. We evaluate a wide range of state-of-the-art incremental learning methods on the proposed orderings. Results show that orderings can have a significant impact on performance and the ranking of the methods.
|