toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Armin Mehri; Parichehr Behjati; Angel Sappa edit  url
openurl 
  Title TnTViT-G: Transformer in Transformer Network for Guidance Super Resolution Type Journal Article
  Year 2023 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 11 Issue Pages 11529-11540  
  Keywords  
  Abstract Image Super Resolution is a potential approach that can improve the image quality of low-resolution optical sensors, leading to improved performance in various industrial applications. It is important to emphasize that most state-of-the-art super resolution algorithms often use a single channel of input data for training and inference. However, this practice ignores the fact that the cost of acquiring high-resolution images in various spectral domains can differ a lot from one another. In this paper, we attempt to exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). We propose a dual stream Transformer-based super resolution approach that uses the visible image as a guide to super-resolve another spectral band image. To this end, we introduce Transformer in Transformer network for Guidance super resolution, named TnTViT-G, an efficient and effective method that extracts the features of input images via different streams and fuses them together at various stages. In addition, unlike other guidance super resolution approaches, TnTViT-G is not limited to a fixed upsample size and it can generate super-resolved images of any size. Extensive experiments on various datasets show that the proposed model outperforms other state-of-the-art super resolution approaches. TnTViT-G surpasses state-of-the-art methods by up to 0.19∼2.3dB , while it is memory efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ MBS2023 Serial 3876  
Permanent link to this record
 

 
Author (down) Alina Matei; Andreea Glavan; Petia Radeva; Estefania Talavera edit  url
doi  openurl
  Title Towards Eating Habits Discovery in Egocentric Photo-Streams Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 17495-17506  
  Keywords  
  Abstract Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MGR2021 Serial 3637  
Permanent link to this record
 

 
Author (down) Alejandro Cartas; Petia Radeva; Mariella Dimiccoli edit  url
doi  openurl
  Title Activities of Daily Living Monitoring via a Wearable Camera: Toward Real-World Applications Type Journal Article
  Year 2020 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 8 Issue Pages 77344 - 77363  
  Keywords  
  Abstract Activity recognition from wearable photo-cameras is crucial for lifestyle characterization and health monitoring. However, to enable its wide-spreading use in real-world applications, a high level of generalization needs to be ensured on unseen users. Currently, state-of-the-art methods have been tested only on relatively small datasets consisting of data collected by a few users that are partially seen during training. In this paper, we built a new egocentric dataset acquired by 15 people through a wearable photo-camera and used it to test the generalization capabilities of several state-of-the-art methods for egocentric activity recognition on unseen users and daily image sequences. In addition, we propose several variants to state-of-the-art deep learning architectures, and we show that it is possible to achieve 79.87% accuracy on users unseen during training. Furthermore, to show that the proposed dataset and approach can be useful in real-world applications, where data can be acquired by different wearable cameras and labeled data are scarcely available, we employed a domain adaptation strategy on two egocentric activity recognition benchmark datasets. These experiments show that the model learned with our dataset, can easily be transferred to other domains with a very small amount of labeled data. Taken together, those results show that activity recognition from wearable photo-cameras is mature enough to be tested in real-world applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ CRD2020 Serial 3436  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: