|   | 
Details
   web
Records
Author (down) Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre
Title The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data Type Journal
Year 2022 Publication Historical Life Course Studies Abbreviated Journal HLCS
Volume 12 Issue Pages 99-132
Keywords Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences
Abstract The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography.
Address June 23, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ PFR2022 Serial 3737
Permanent link to this record
 

 
Author (down) Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund
Title Multi-Task Classification of Sewer Pipe Defects and Properties Using a Cross-Task Graph Neural Network Decoder Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 2806-2817
Keywords Vision Systems; Applications Multi-Task Classification
Abstract The sewerage infrastructure is one of the most important and expensive infrastructures in modern society. In order to efficiently manage the sewerage infrastructure, automated sewer inspection has to be utilized. However, while sewer
defect classification has been investigated for decades, little attention has been given to classifying sewer pipe properties such as water level, pipe material, and pipe shape, which are needed to evaluate the level of sewer pipe deterioration.
In this work we classify sewer pipe defects and properties concurrently and present a novel decoder-focused multi-task classification architecture Cross-Task Graph Neural Network (CT-GNN), which refines the disjointed per-task predictions using cross-task information. The CT-GNN architecture extends the traditional disjointed task-heads decoder, by utilizing a cross-task graph and unique class node embeddings. The cross-task graph can either be determined a priori based on the conditional probability between the task classes or determined dynamically using self-attention.
CT-GNN can be added to any backbone and trained end-toend at a small increase in the parameter count. We achieve state-of-the-art performance on all four classification tasks in the Sewer-ML dataset, improving defect classification and
water level classification by 5.3 and 8.0 percentage points, respectively. We also outperform the single task methods as well as other multi-task classification approaches while introducing 50 times fewer parameters than previous modelfocused approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2022 Serial 3638
Permanent link to this record
 

 
Author (down) Joakim Bruslund Haurum; Meysam Madadi; Sergio Escalera; Thomas B. Moeslund
Title Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification Type Journal Article
Year 2022 Publication Automation in Construction Abbreviated Journal AC
Volume 144 Issue Pages 104614
Keywords Sewer Defect Classification; Vision Transformers; Sinkhorn-Knopp; Convolutional Neural Networks; Closed-Circuit Television; Sewer Inspection
Abstract A crucial part of image classification consists of capturing non-local spatial semantics of image content. This paper describes the multi-scale hybrid vision transformer (MSHViT), an extension of the classical convolutional neural network (CNN) backbone, for multi-label sewer defect classification. To better model spatial semantics in the images, features are aggregated at different scales non-locally through the use of a lightweight vision transformer, and a smaller set of tokens was produced through a novel Sinkhorn clustering-based tokenizer using distinct cluster centers. The proposed MSHViT and Sinkhorn tokenizer were evaluated on the Sewer-ML multi-label sewer defect classification dataset, showing consistent performance improvements of up to 2.53 percentage points.
Address Dec 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ BME2022c Serial 3780
Permanent link to this record
 

 
Author (down) Javier Rodenas; Bhalaji Nagarajan; Marc Bolaños; Petia Radeva
Title Learning Multi-Subset of Classes for Fine-Grained Food Recognition Type Conference Article
Year 2022 Publication 7th International Workshop on Multimedia Assisted Dietary Management Abbreviated Journal
Volume Issue Pages 17–26
Keywords
Abstract Food image recognition is a complex computer vision task, because of the large number of fine-grained food classes. Fine-grained recognition tasks focus on learning subtle discriminative details to distinguish similar classes. In this paper, we introduce a new method to improve the classification of classes that are more difficult to discriminate based on Multi-Subsets learning. Using a pre-trained network, we organize classes in multiple subsets using a clustering technique. Later, we embed these subsets in a multi-head model structure. This structure has three distinguishable parts. First, we use several shared blocks to learn the generalized representation of the data. Second, we use multiple specialized blocks focusing on specific subsets that are difficult to distinguish. Lastly, we use a fully connected layer to weight the different subsets in an end-to-end manner by combining the neuron outputs. We validated our proposed method using two recent state-of-the-art vision transformers on three public food recognition datasets. Our method was successful in learning the confused classes better and we outperformed the state-of-the-art on the three datasets.
Address Lisboa; Portugal; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MADiMa
Notes MILAB Approved no
Call Number Admin @ si @ RNB2022 Serial 3797
Permanent link to this record
 

 
Author (down) Javad Zolfaghari Bengar; Joost Van de Weijer; Laura Lopez-Fuentes; Bogdan Raducanu
Title Class-Balanced Active Learning for Image Classification Type Conference Article
Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Active learning aims to reduce the labeling effort that is required to train algorithms by learning an acquisition function selecting the most relevant data for which a label should be requested from a large unlabeled data pool. Active learning is generally studied on balanced datasets where an equal amount of images per class is available. However, real-world datasets suffer from severe imbalanced classes, the so called long-tail distribution. We argue that this further complicates the active learning process, since the imbalanced data pool can result in suboptimal classifiers. To address this problem in the context of active learning, we proposed a general optimization framework that explicitly takes class-balancing into account. Results on three datasets showed that the method is general (it can be combined with most existing active learning algorithms) and can be effectively applied to boost the performance of both informative and representative-based active learning methods. In addition, we showed that also on balanced datasets
our method 1 generally results in a performance gain.
Address Virtual; Waikoloa; Hawai; USA; January 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes LAMP; 602.200; 600.147; 600.120 Approved no
Call Number Admin @ si @ ZWL2022 Serial 3703
Permanent link to this record
 

 
Author (down) Idoia Ruiz; Joan Serrat
Title Hierarchical Novelty Detection for Traffic Sign Recognition Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 12 Pages 4389
Keywords Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision
Abstract Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.154 Approved no
Call Number Admin @ si @ RuS2022 Serial 3684
Permanent link to this record
 

 
Author (down) Idoia Ruiz
Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.
Address July, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Joan Serrat
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-4-8 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rui2022 Serial 3717
Permanent link to this record
 

 
Author (down) Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey
Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
Year 2022 Publication Journal of Archaeological Science Abbreviated Journal JArchSci
Volume 148 Issue Pages 105654
Keywords
Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.
Address December 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO; 600.167 Approved no
Call Number Admin @ si @ BOL2022 Serial 3753
Permanent link to this record
 

 
Author (down) Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier
Title Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC
Volume 13 Issue 2 Pages 894-911
Keywords
Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
Address 1 April-June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ EKS2022 Serial 3406
Permanent link to this record
 

 
Author (down) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Neural Cloth Simulation Type Journal Article
Year 2022 Publication ACM Transactions on Graphics Abbreviated Journal ACMTGraph
Volume 41 Issue 6 Pages 1-14
Keywords
Abstract We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.



ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
Address Dec 2022
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ BME2022b Serial 3779
Permanent link to this record
 

 
Author (down) Henry Velesaca; Patricia Suarez; Dario Carpio; Rafael E. Rivadeneira; Angel Sanchez; Angel Morera
Title Video Analytics in Urban Environments: Challenges and Approaches Type Book Chapter
Year 2022 Publication ICT Applications for Smart Cities Abbreviated Journal
Volume 224 Issue Pages 101-121
Keywords
Abstract This chapter reviews state-of-the-art approaches generally present in the pipeline of video analytics on urban scenarios. A typical pipeline is used to cluster approaches in the literature, including image preprocessing, object detection, object classification, and object tracking modules. Then, a review of recent approaches for each module is given. Additionally, applications and datasets generally used for training and evaluating the performance of these approaches are included. This chapter does not pretend to be an exhaustive review of state-of-the-art video analytics in urban environments but rather an illustration of some of the different recent contributions. The chapter concludes by presenting current trends in video analytics in the urban scenario field.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ VSC2022 Serial 3811
Permanent link to this record
 

 
Author (down) Henry Velesaca; Patricia Suarez; Angel Sappa; Dario Carpio; Rafael E. Rivadeneira; Angel Sanchez
Title Review on Common Techniques for Urban Environment Video Analytics Type Conference Article
Year 2022 Publication Anais do III Workshop Brasileiro de Cidades Inteligentes Abbreviated Journal
Volume Issue Pages 107-118
Keywords Video Analytics; Review; Urban Environments; Smart Cities
Abstract This work compiles the different computer vision-based approaches
from the state-of-the-art intended for video analytics in urban environments.
The manuscript groups the different approaches according to the typical modules present in video analysis, including image preprocessing, object detection,
classification, and tracking. This proposed pipeline serves as a basic guide to
representing these most representative approaches in this topic of video analysis
that will be addressed in this work. Furthermore, the manuscript is not intended
to be an exhaustive review of the most advanced approaches, but only a list of
common techniques proposed to address recurring problems in this field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WBCI
Notes MSIAU; 601.349 Approved no
Call Number Admin @ si @ VSS2022 Serial 3773
Permanent link to this record
 

 
Author (down) Hector Laria Mantecon; Yaxing Wang; Joost Van de Weijer; Bogdan Raducanu
Title Transferring Unconditional to Conditional GANs With Hyper-Modulation Type Conference Article
Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal
Volume Issue Pages
Keywords
Abstract GANs have matured in recent years and are able to generate high-resolution, realistic images. However, the computational resources and the data required for the training of high-quality GANs are enormous, and the study of transfer learning of these models is therefore an urgent topic. Many of the available high-quality pretrained GANs are unconditional (like StyleGAN). For many applications, however, conditional GANs are preferable, because they provide more control over the generation process, despite often suffering more training difficulties. Therefore, in this paper, we focus on transferring from high-quality pretrained unconditional GANs to conditional GANs. This requires architectural adaptation of the pretrained GAN to perform the conditioning. To this end, we propose hyper-modulated generative networks that allow for shared and complementary supervision. To prevent the additional weights of the hypernetwork to overfit, with subsequent mode collapse on small target domains, we introduce a self-initialization procedure that does not require any real data to initialize the hypernetwork parameters. To further improve the sample efficiency of the transfer, we apply contrastive learning in the discriminator, which effectively works on very limited batch sizes. In extensive experiments, we validate the efficiency of the hypernetworks, self-initialization and contrastive loss for knowledge transfer on standard benchmarks.
Address New Orleans; USA; June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.147; 602.200 Approved no
Call Number LWW2022a Serial 3785
Permanent link to this record
 

 
Author (down) Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil
Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 3 Pages 1568
Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Address Jan 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.145 Approved no
Call Number Admin @ si @ TBS2022 Serial 3699
Permanent link to this record
 

 
Author (down) Guillem Martinez; Maya Aghaei; Martin Dijkstra; Bhalaji Nagarajan; Femke Jaarsma; Jaap van de Loosdrecht; Petia Radeva; Klaas Dijkstra
Title Hyper-Spectral Imaging for Overlapping Plastic Flakes Segmentation Type Conference Article
Year 2022 Publication 47th International Conference on Acoustics, Speech, and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords Hyper-spectral imaging; plastic sorting; multi-label segmentation; bitfield encoding
Abstract In this paper, we propose a deformable convolution-based generative adversarial network (DCNGAN) for perceptual quality enhancement of compressed videos. DCNGAN is also adaptive to the quantization parameters (QPs). Compared with optical flows, deformable convolutions are more effective and efficient to align frames. Deformable convolutions can operate on multiple frames, thus leveraging more temporal information, which is beneficial for enhancing the perceptual quality of compressed videos. Instead of aligning frames in a pairwise manner, the deformable convolution can process multiple frames simultaneously, which leads to lower computational complexity. Experimental results demonstrate that the proposed DCNGAN outperforms other state-of-the-art compressed video quality enhancement algorithms.
Address Singapore; May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes MILAB; no proj Approved no
Call Number Admin @ si @ MAD2022 Serial 3767
Permanent link to this record