|   | 
Details
   web
Records
Author (up) Gabriel Villalonga; Sebastian Ramos; German Ros; David Vazquez; Antonio Lopez
Title 3d Pedestrian Detection via Random Forest Type Miscellaneous
Year 2014 Publication European Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 231-238
Keywords Pedestrian Detection
Abstract Our demo focuses on showing the extraordinary performance of our novel 3D pedestrian detector along with its simplicity and real-time capabilities. This detector has been designed for autonomous driving applications, but it can also be applied in other scenarios that cover both outdoor and indoor applications.
Our pedestrian detector is based on the combination of a random forest classifier with HOG-LBP features and the inclusion of a preprocessing stage based on 3D scene information in order to precisely determinate the image regions where the detector should search for pedestrians. This approach ends up in a high accurate system that runs real-time as it is required by many computer vision and robotics applications.
Address Zurich; suiza; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV-Demo
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ VRR2014 Serial 2570
Permanent link to this record
 

 
Author (up) Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados
Title Fast Structural Matching for Document Image Retrieval through Spatial Databases Type Conference Article
Year 2014 Publication Document Recognition and Retrieval XXI Abbreviated Journal
Volume 9021 Issue Pages
Keywords Document image retrieval; distance transform; MSER; spatial database
Abstract The structure of document images plays a signi cant role in document analysis thus considerable e orts have been made towards extracting and understanding document structure, usually in the form of layout analysis approaches. In this paper, we rst employ Distance Transform based MSER (DTMSER) to eciently extract stable document structural elements in terms of a dendrogram of key-regions. Then a fast structural matching method is proposed to query the structure of document (dendrogram) based on a spatial database which facilitates the formulation of advanced spatial queries. The experiments demonstrate a signi cant improvement in a document retrieval scenario when compared to the use of typical Bag of Words (BoW) and pyramidal BoW descriptors.
Address Amsterdam; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SPIE-DRR
Notes DAG; 600.056; 600.061; 600.077 Approved no
Call Number Admin @ si @ GRK2014a Serial 2496
Permanent link to this record
 

 
Author (up) Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados
Title Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2903 - 2908
Keywords
Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
Address Stockholm; Sweden; August 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.056; 600.061; 600.077 Approved no
Call Number Admin @ si @ GRK2014b Serial 2497
Permanent link to this record
 

 
Author (up) Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Ludmila I. Kuncheva
Title Occlusion handling via random subspace classifiers for human detection Type Journal Article
Year 2014 Publication IEEE Transactions on Systems, Man, and Cybernetics (Part B) Abbreviated Journal TSMCB
Volume 44 Issue 3 Pages 342-354
Keywords Pedestriand Detection; occlusion handling
Abstract This paper describes a general method to address partial occlusions for human detection in still images. The Random Subspace Method (RSM) is chosen for building a classifier ensemble robust against partial occlusions. The component classifiers are chosen on the basis of their individual and combined performance. The main contribution of this work lies in our approach’s capability to improve the detection rate when partial occlusions are present without compromising the detection performance on non occluded data. In contrast to many recent approaches, we propose a method which does not require manual labelling of body parts, defining any semantic spatial components, or using additional data coming from motion or stereo. Moreover, the method can be easily extended to other object classes. The experiments are performed on three large datasets: the INRIA person dataset, the Daimler Multicue dataset, and a new challenging dataset, called PobleSec, in which a considerable number of targets are partially occluded. The different approaches are evaluated at the classification and detection levels for both partially occluded and non-occluded data. The experimental results show that our detector outperforms state-of-the-art approaches in the presence of partial occlusions, while offering performance and reliability similar to those of the holistic approach on non-occluded data. The datasets used in our experiments have been made publicly available for benchmarking purposes
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-2267 ISBN Medium
Area Expedition Conference
Notes ADAS; 605.203; 600.057; 600.054; 601.042; 601.187; 600.076 Approved no
Call Number ADAS @ adas @ MVL2014 Serial 2213
Permanent link to this record
 

 
Author (up) Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa
Title Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 15 Issue 5 Pages 2121-2131
Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds
Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number ADAS @ adas @ XVL2014 Serial 2433
Permanent link to this record
 

 
Author (up) Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Domain Adaptation of Deformable Part-Based Models Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 12 Pages 2367-2380
Keywords Domain Adaptation; Pedestrian Detection
Abstract The accuracy of object classifiers can significantly drop when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, adapting the classifiers to the scenario in which they must operate is of paramount importance. We present novel domain adaptation (DA) methods for object detection. As proof of concept, we focus on adapting the state-of-the-art deformable part-based model (DPM) for pedestrian detection. We introduce an adaptive structural SVM (A-SSVM) that adapts a pre-learned classifier between different domains. By taking into account the inherent structure in feature space (e.g., the parts in a DPM), we propose a structure-aware A-SSVM (SA-SSVM). Neither A-SSVM nor SA-SSVM needs to revisit the source-domain training data to perform the adaptation. Rather, a low number of target-domain training examples (e.g., pedestrians) are used. To address the scenario where there are no target-domain annotated samples, we propose a self-adaptive DPM based on a self-paced learning (SPL) strategy and a Gaussian Process Regression (GPR). Two types of adaptation tasks are assessed: from both synthetic pedestrians and general persons (PASCAL VOC) to pedestrians imaged from an on-board camera. Results show that our proposals avoid accuracy drops as high as 15 points when comparing adapted and non-adapted detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no
Call Number ADAS @ adas @ XRV2014b Serial 2436
Permanent link to this record
 

 
Author (up) Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez
Title Incremental Domain Adaptation of Deformable Part-based Models Type Conference Article
Year 2014 Publication 25th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords Pedestrian Detection; Part-based models; Domain Adaptation
Abstract Nowadays, classifiers play a core role in many computer vision tasks. The underlying assumption for learning classifiers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classifiers. However, in practice, there are different reasons that can break this constancy assumption. Accordingly, reusing existing classifiers by adapting them from the previous training environment (source domain) to the new testing one (target domain)
is an approach with increasing acceptance in the computer vision community. In this paper we focus on the domain adaptation of deformable part-based models (DPMs) for object detection. In particular, we focus on a relatively unexplored scenario, i.e. incremental domain adaptation for object detection assuming weak-labeling. Therefore, our algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a little amount of labeled target-domain training data is available, and keeps improving as more of such data arrives in a continuous fashion. For achieving this, we follow a multiple
instance learning (MIL) paradigm that operates in an incremental per-image basis. As proof of concept, we address the challenging scenario of adapting a DPM-based pedestrian detector trained with synthetic pedestrians to operate in real-world scenarios. The obtained results show that our incremental adaptive models obtain equally good accuracy results as the batch learned models, while being more flexible for handling continuously arriving target-domain data.
Address Nottingham; uk; September 2014
Corporate Author Thesis
Publisher BMVA Press Place of Publication Editor Valstar, Michel and French, Andrew and Pridmore, Tony
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes ADAS; 600.057; 600.054; 600.076 Approved no
Call Number XRV2014c; ADAS @ adas @ xrv2014c Serial 2455
Permanent link to this record
 

 
Author (up) Jiaolong Xu; Sebastian Ramos;David Vazquez; Antonio Lopez
Title Cost-sensitive Structured SVM for Multi-category Domain Adaptation Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3886 - 3891
Keywords Domain Adaptation; Pedestrian Detection
Abstract Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.
Address Stockholm; Sweden; August 2014
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN Medium
Area Expedition Conference ICPR
Notes ADAS; 600.057; 600.054; 601.217; 600.076 Approved no
Call Number ADAS @ adas @ XRV2014a Serial 2434
Permanent link to this record
 

 
Author (up) Joan Arnedo-Moreno; D. Bañeres; Xavier Baro; S. Caballe; S. Guerrero; L. Porta; J. Prieto
Title Va-ID: A trust-based virtual assessment system Type Conference Article
Year 2014 Publication 6th International Conference on Intelligent Networking and Collaborative Systems Abbreviated Journal
Volume Issue Pages 328 - 335
Keywords
Abstract Even though online education is a very important pillar of lifelong education, institutions are still reluctant to wager for a fully online educational model. At the end, they keep relying on on-site assessment systems, mainly because fully virtual alternatives do not have the deserved social recognition or credibility. Thus, the design of virtual assessment systems that are able to provide effective proof of student authenticity and authorship and the integrity of the activities in a scalable and cost efficient manner would be very helpful. This paper presents ValID, a virtual assessment approach based on a continuous trust level evaluation between students and the institution. The current trust level serves as the main mechanism to dynamically decide which kind of controls a given student should be subjected to, across different courses in a degree. The main goal is providing a fair trade-off between security, scalability and cost, while maintaining the perceived quality of the educational model.
Address Salerna; Italy; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4799-6386-7 Medium
Area Expedition Conference INCOS
Notes OR; HuPBA;MV Approved no
Call Number Admin @ si @ ABB2014 Serial 2620
Permanent link to this record
 

 
Author (up) Joan M. Nuñez; Jorge Bernal; Miquel Ferrer; Fernando Vilariño
Title Impact of Keypoint Detection on Graph-based Characterization of Blood Vessels in Colonoscopy Videos Type Conference Article
Year 2014 Publication CARE workshop Abbreviated Journal
Volume Issue Pages
Keywords Colonoscopy; Graph Matching; Biometrics; Vessel; Intersection
Abstract We explore the potential of the use of blood vessels as anatomical landmarks for developing image registration methods in colonoscopy images. An unequivocal representation of blood vessels could be used to guide follow-up methods to track lesions over different interventions. We propose a graph-based representation to characterize network structures, such as blood vessels, based on the use of intersections and endpoints. We present a study consisting of the assessment of the minimal performance a keypoint detector should achieve so that the structure can still be recognized. Experimental results prove that, even by achieving a loss of 35% of the keypoints, the descriptive power of the associated graphs to the vessel pattern is still high enough to recognize blood vessels.
Address Boston; USA; September 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARE
Notes MV; DAG; 600.060; 600.047; 600.077;SIAI Approved no
Call Number Admin @ si @ NBF2014 Serial 2504
Permanent link to this record
 

 
Author (up) Joan Marc Llargues Asensio; Juan Peralta; Raul Arrabales; Manuel Gonzalez Bedia; Paulo Cortez; Antonio Lopez
Title Artificial Intelligence Approaches for the Generation and Assessment of Believable Human-Like Behaviour in Virtual Characters Type Journal Article
Year 2014 Publication Expert Systems With Applications Abbreviated Journal EXSY
Volume 41 Issue 16 Pages 7281–7290
Keywords Turing test; Human-like behaviour; Believability; Non-player characters; Cognitive architectures; Genetic algorithm; Artificial neural networks
Abstract Having artificial agents to autonomously produce human-like behaviour is one of the most ambitious original goals of Artificial Intelligence (AI) and remains an open problem nowadays. The imitation game originally proposed by Turing constitute a very effective method to prove the indistinguishability of an artificial agent. The behaviour of an agent is said to be indistinguishable from that of a human when observers (the so-called judges in the Turing test) cannot tell apart humans and non-human agents. Different environments, testing protocols, scopes and problem domains can be established to develop limited versions or variants of the original Turing test. In this paper we use a specific version of the Turing test, based on the international BotPrize competition, built in a First-Person Shooter video game, where both human players and non-player characters interact in complex virtual environments. Based on our past experience both in the BotPrize competition and other robotics and computer game AI applications we have developed three new more advanced controllers for believable agents: two based on a combination of the CERA–CRANIUM and SOAR cognitive architectures and other based on ADANN, a system for the automatic evolution and adaptation of artificial neural networks. These two new agents have been put to the test jointly with CCBot3, the winner of BotPrize 2010 competition (Arrabales et al., 2012), and have showed a significant improvement in the humanness ratio. Additionally, we have confronted all these bots to both First-person believability assessment (BotPrize original judging protocol) and Third-person believability assessment, demonstrating that the active involvement of the judge has a great impact in the recognition of human-like behaviour.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.055; 600.057; 600.076 Approved no
Call Number Admin @ si @ LPA2014 Serial 2500
Permanent link to this record
 

 
Author (up) Jon Almazan
Title Learning to Represent Handwritten Shapes and Words for Matching and Recognition Type Book Whole
Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Writing is one of the most important forms of communication and for centuries, handwriting had been the most reliable way to preserve knowledge. However, despite the recent development of printing houses and electronic devices, handwriting is still broadly used for taking notes, doing annotations, or sketching ideas.
Transferring the ability of understanding handwritten text or recognizing handwritten shapes to computers has been the goal of many researches due to its huge importance for many different fields. However, designing good representations to deal with handwritten shapes, e.g. symbols or words, is a very challenging problem due to the large variability of these kinds of shapes. One of the consequences of working with handwritten shapes is that we need representations to be robust, i.e., able to adapt to large intra-class variability. We need representations to be discriminative, i.e., able to learn what are the differences between classes. And, we need representations to be efficient, i.e., able to be rapidly computed and compared. Unfortunately, current techniques of handwritten shape representation for matching and recognition do not fulfill some or all of these requirements.
Through this thesis we focus on the problem of learning to represent handwritten shapes aimed at retrieval and recognition tasks. Concretely, on the first part of the thesis, we focus on the general problem of representing any kind of handwritten shape. We first present a novel shape descriptor based on a deformable grid that deals with large deformations by adapting to the shape and where the cells of the grid can be used to extract different features. Then, we propose to use this descriptor to learn statistical models, based on the Active Appearance Model, that jointly learns the variability in structure and texture of a given class. Then, on the second part, we focus on a concrete application, the problem of representing handwritten words, for the tasks of word spotting, where the goal is to find all instances of a query word in a dataset of images, and recognition. First, we address the segmentation-free problem and propose an unsupervised, sliding-window-based approach that achieves state-of- the-art results in two public datasets. Second, we address the more challenging multi-writer problem, where the variability in words exponentially increases. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace, and where those that represent the same word are close together. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. This leads to a low-dimensional, unified representation of word images and strings, resulting in a method that allows one to perform either image and text searches, as well as image transcription, in a unified framework. We evaluate our methods on different public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny;Alicia Fornes
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ Alm2014 Serial 2572
Permanent link to this record
 

 
Author (up) Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny
Title Word Spotting and Recognition with Embedded Attributes Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 12 Pages 2552 - 2566
Keywords
Abstract This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes DAG; 600.056; 600.045; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ AGF2014a Serial 2483
Permanent link to this record
 

 
Author (up) Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny
Title Segmentation-free Word Spotting with Exemplar SVMs Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 12 Pages 3967–3978
Keywords Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression
Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.045; 600.056; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ AGF2014b Serial 2485
Permanent link to this record
 

 
Author (up) Jorge Bernal
Title Polyp Localization and Segmentation in Colonoscopy Images by Means of a Model of Appearance for Polyps Type Journal Article
Year 2014 Publication Electronic Letters on Computer Vision and Image Analysis Abbreviated Journal ELCVIA
Volume 13 Issue 2 Pages 9-10
Keywords Colonoscopy; polyp localization; polyp segmentation; Eye-tracking
Abstract Colorectal cancer is the fourth most common cause of cancer death worldwide and its survival rate depends on the stage in which it is detected on hence the necessity for an early colon screening. There are several screening techniques but colonoscopy is still nowadays the gold standard, although it has some drawbacks such as the miss rate. Our contribution, in the field of intelligent systems for colonoscopy, aims at providing a polyp localization and a polyp segmentation system based on a model of appearance for polyps. To develop both methods we define a model of appearance for polyps, which describes a polyp as enclosed by intensity valleys. The novelty of our contribution resides on the fact that we include in our model aspects of the image formation and we also consider the presence of other elements from the endoluminal scene such as specular highlights and blood vessels, which have an impact on the performance of our methods. In order to develop our polyp localization method we accumulate valley information in order to generate energy maps, which are also used to guide the polyp segmentation. Our methods achieve promising results in polyp localization and segmentation. As we want to explore the usability of our methods we present a comparative analysis between physicians fixations obtained via an eye tracking device and our polyp localization method. The results show that our method is indistinguishable to novice physicians although it is far from expert physicians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor Alicia Fornes; Volkmar Frinken
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV Approved no
Call Number Admin @ si @ Ber2014 Serial 2487
Permanent link to this record