|   | 
Details
   web
Records
Author (up) Graham D. Finlayson; Javier Vazquez; Fufu Fang
Title The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
Year 2021 Publication 29th Color and Imaging Conference Abbreviated Journal
Volume Issue Pages 13-18
Keywords
Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
Address Virtual; November 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes CIC Approved no
Call Number FVF2021 Serial 3596
Permanent link to this record
 

 
Author (up) Hannes Mueller; Andre Groeger; Jonathan Hersh; Andrea Matranga; Joan Serrat
Title Monitoring war destruction from space using machine learning Type Journal Article
Year 2021 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal PNAS
Volume 118 Issue 23 Pages e2025400118
Keywords
Abstract Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ MGH2021 Serial 3584
Permanent link to this record
 

 
Author (up) Hassan Ahmed Sial
Title Estimating Light Effects from a Single Image: Deep Architectures and Ground-Truth Generation Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we explore how to estimate the effects of the light interacting with the scene objects from a single image. To achieve this goal, we focus on recovering intrinsic components like reflectance, shading, or light properties such as color and position using deep architectures. The success of these approaches relies on training on large and diversified image datasets. Therefore, we present several contributions on this such as: (a) a data-augmentation technique; (b) a ground-truth for an existing multi-illuminant dataset; (c) a family of synthetic datasets, SID for Surreal Intrinsic Datasets, with diversified backgrounds and coherent light conditions; and (d) a practical pipeline to create hybrid ground-truths to overcome the complexity of acquiring realistic light conditions in a massive way. In parallel with the creation of datasets, we trained different flexible encoder-decoder deep architectures incorporating physical constraints from the image formation models.

In the last part of the thesis, we apply all the previous experience to two different problems. Firstly, we create a large hybrid Doc3DShade dataset with real shading and synthetic reflectance under complex illumination conditions, that is used to train a two-stage architecture that improves the character recognition task in complex lighting conditions of unwrapped documents. Secondly, we tackle the problem of single image scene relighting by extending both, the SID dataset to present stronger shading and shadows effects, and the deep architectures to use intrinsic components to estimate new relit images.
Address September 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Maria Vanrell;Ramon Baldrich
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-8-5 Medium
Area Expedition Conference
Notes CIC; Approved no
Call Number Admin @ si @ Sia2021 Serial 3607
Permanent link to this record
 

 
Author (up) Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa
Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal
Volume 13017 Issue Pages 131–143
Keywords
Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISVC
Notes MSIAU Approved no
Call Number Admin @ si @ VSC2021 Serial 3667
Permanent link to this record
 

 
Author (up) Henry Velesaca; Patricia Suarez; Raul Mira; Angel Sappa
Title Computer Vision based Food Grain Classification: a Comprehensive Survey Type Journal Article
Year 2021 Publication Computers and Electronics in Agriculture Abbreviated Journal CEA
Volume 187 Issue Pages 106287
Keywords
Abstract This manuscript presents a comprehensive survey on recent computer vision based food grain classification techniques. It includes state-of-the-art approaches intended for different grain varieties. The approaches proposed in the literature are analyzed according to the processing stages considered in the classification pipeline, making it easier to identify common techniques and comparisons. Additionally, the type of images considered by each approach (i.e., images from the: visible, infrared, multispectral, hyperspectral bands) together with the strategy used to generate ground truth data (i.e., real and synthetic images) are reviewed. Finally, conclusions highlighting future needs and challenges are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ VSM2021 Serial 3576
Permanent link to this record
 

 
Author (up) Hugo Bertiche; Meysam Madadi; Emilio Tylson; Sergio Escalera
Title DeePSD: Automatic Deep Skinning And Pose Space Deformation For 3D Garment Animation Type Conference Article
Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 5471-5480
Keywords
Abstract We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ BMT2021 Serial 3606
Permanent link to this record
 

 
Author (up) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image Type Conference Article
Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract We present a methodology to retrieve analytical surfaces parametrized as a neural network. Previous works on 3D reconstruction yield point clouds, voxelized objects or meshes. Instead, our approach yields 2-manifolds in the euclidean space through deep learning. To this end, we implement a novel formulation for fully connected layers as parametrized manifolds that allows continuous predictions with differential geometry. Based on this property we propose a novel smoothness loss. Results on CLOTH3D++ dataset show the possibility to infer different topologies and the benefits of the smoothness term based on differential geometry.
Address Virtual; December 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FG
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021 Serial 3640
Permanent link to this record
 

 
Author (up) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Conference Article
Year 2021 Publication 14th ACM Siggraph Conference and exhibition on Computer Graphics and Interactive Techniques in Asia Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address Virtual; December 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SIGGRAPH
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021b Serial 3641
Permanent link to this record
 

 
Author (up) Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal
Volume 40 Issue 6 Pages 1-14
Keywords
Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021c Serial 3643
Permanent link to this record
 

 
Author (up) Idoia Ruiz; Lorenzo Porzi; Samuel Rota Bulo; Peter Kontschieder; Joan Serrat
Title Weakly Supervised Multi-Object Tracking and Segmentation Type Conference Article
Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 125-133
Keywords
Abstract We introduce the problem of weakly supervised MultiObject Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and multi-object tracking, in which we do not provide any kind of mask annotation.
To address it, we design a novel synergistic training strategy by taking advantage of multi-task learning, i.e. classification and tracking tasks guide the training of the unsupervised instance segmentation. For that purpose, we extract weak foreground localization information, provided by
Grad-CAM heatmaps, to generate a partial ground truth to learn from. Additionally, RGB image level information is employed to refine the mask prediction at the edges of the
objects. We evaluate our method on KITTI MOTS, the most representative benchmark for this task, reducing the performance gap on the MOTSP metric between the fully supervised and weakly supervised approach to just 12% and 12.7 % for cars and pedestrians, respectively.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACVW
Notes ADAS; 600.118; 600.124 Approved no
Call Number Admin @ si @ RPR2021 Serial 3548
Permanent link to this record
 

 
Author (up) Javad Zolfaghari Bengar
Title Reducing Label Effort with Deep Active Learning Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition applications, such as image classification, detection and segmentation. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected
informative and/or representative samples. In this thesis we study several aspects of active learning including video object detection for autonomous driving systems, image classification on balanced and imbalanced datasets and the incorporation of self-supervised learning in active learning. We briefly describe our approach in each of these areas to reduce the labeling effort.
In chapter two we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our criterion is based on the estimated number of errors in terms of false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active
learning for video object detection in road scenes. Finally, we show that our
approach outperforms active learning baselines tested on two outdoor datasets.
In the next chapter we address the well-known problem of over confidence in the neural networks. As an alternative to network confidence, we propose a new informativeness-based active learning method that captures the learning dynamics of neural network with a metric called label-dispersion. This metric is low when the network consistently assigns the same label to the sample during the course of training and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.
In chapter four, we tackle the problem of sampling bias in active learning methods on imbalanced datasets. Active learning is generally studied on balanced datasets where an equal amount of images per class is available. However, real-world datasets suffer from severe imbalanced classes, the so called longtail distribution. We argue that this further complicates the active learning process, since the imbalanced data pool can result in suboptimal classifiers. To address this problem in the context of active learning, we propose a general optimization framework that explicitly takes class-balancing into account. Results on three datasets show that the method is general (it can be combined with most existing active learning algorithms) and can be effectively applied to boost the performance of both informative and representative-based active learning methods. In addition, we show that also on balanced datasets our method generally results in a performance gain.
Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent advancements in self-training have achieved very impressive results rivaling supervised learning on some datasets. In the last chapter we focus on whether active learning and self supervised learning can benefit from each other.
We study object recognition datasets with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high.
Address December 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-9-2 Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ Zol2021 Serial 3609
Permanent link to this record
 

 
Author (up) Javad Zolfaghari Bengar; Bogdan Raducanu; Joost Van de Weijer
Title When Deep Learners Change Their Mind: Learning Dynamics for Active Learning Type Conference Article
Year 2021 Publication 19th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal
Volume 13052 Issue 1 Pages 403-413
Keywords
Abstract Active learning aims to select samples to be annotated that yield the largest performance improvement for the learning algorithm. Many methods approach this problem by measuring the informativeness of samples and do this based on the certainty of the network predictions for samples. However, it is well-known that neural networks are overly confident about their prediction and are therefore an untrustworthy source to assess sample informativeness. In this paper, we propose a new informativeness-based active learning method. Our measure is derived from the learning dynamics of a neural network. More precisely we track the label assignment of the unlabeled data pool during the training of the algorithm. We capture the learning dynamics with a metric called label-dispersion, which is low when the network consistently assigns the same label to the sample during the training of the network and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.
Address September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CAIP
Notes LAMP; Approved no
Call Number Admin @ si @ ZRV2021 Serial 3673
Permanent link to this record
 

 
Author (up) Javad Zolfaghari Bengar; Joost Van de Weijer; Bartlomiej Twardowski; Bogdan Raducanu
Title Reducing Label Effort: Self- Supervised Meets Active Learning Type Conference Article
Year 2021 Publication International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 1631-1639
Keywords
Abstract Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected informative and/or representative samples. Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets. The current work focuses on whether the two paradigms can benefit from each other. We studied object recognition datasets including CIFAR10, CIFAR100 and Tiny ImageNet with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high. The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.
Address October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes LAMP; Approved no
Call Number Admin @ si @ ZVT2021 Serial 3672
Permanent link to this record
 

 
Author (up) Javier M. Olaso; Alain Vazquez; Leila Ben Letaifa; Mikel de Velasco; Aymen Mtibaa; Mohamed Amine Hmani; Dijana Petrovska-Delacretaz; Gerard Chollet; Cesar Montenegro; Asier Lopez-Zorrilla; Raquel Justo; Roberto Santana; Jofre Tenorio-Laranga; Eduardo Gonzalez-Fraile; Begoña Fernandez-Ruanova; Gennaro Cordasco; Anna Esposito; Kristin Beck Gjellesvik; Anna Torp Johansen; Maria Stylianou Kornes; Colin Pickard; Cornelius Glackin; Gary Cahalane; Pau Buch; Cristina Palmero; Sergio Escalera; Olga Gordeeva; Olivier Deroo; Anaïs Fernandez; Daria Kyslitska; Jose Antonio Lozano; Maria Ines Torres; Stephan Schlogl
Title The EMPATHIC Virtual Coach: a demo Type Conference Article
Year 2021 Publication 23rd ACM International Conference on Multimodal Interaction Abbreviated Journal
Volume Issue Pages 848-851
Keywords
Abstract The main objective of the EMPATHIC project has been the design and development of a virtual coach to engage the healthy-senior user and to enhance well-being through awareness of personal status. The EMPATHIC approach addresses this objective through multimodal interactions supported by the GROW coaching model. The paper summarizes the main components of the EMPATHIC Virtual Coach (EMPATHIC-VC) and introduces a demonstration of the coaching sessions in selected scenarios.
Address Virtual; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICMI
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ OVB2021 Serial 3644
Permanent link to this record
 

 
Author (up) Javier Marin; Sergio Escalera
Title SSSGAN: Satellite Style and Structure Generative Adversarial Networks Type Journal Article
Year 2021 Publication Remote Sensing Abbreviated Journal
Volume 13 Issue 19 Pages 3984
Keywords
Abstract This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ MaE2021 Serial 3651
Permanent link to this record