|   | 
Details
   web
Records
Author (up) E. Bondi ; L. Sidenari; Andrew Bagdanov; Alberto del Bimbo
Title Real-time people counting from depth imagery of crowded environments Type Conference Article
Year 2014 Publication 11th IEEE International Conference on Advanced Video and Signal based Surveillance Abbreviated Journal
Volume Issue Pages 337 - 342
Keywords
Abstract In this paper we describe a system for automatic people counting in crowded environments. The approach we propose is a counting-by-detection method based on depth imagery. It is designed to be deployed as an autonomous appliance for crowd analysis in video surveillance application scenarios. Our system performs foreground/background segmentation on depth image streams in order to coarsely segment persons, then depth information is used to localize head candidates which are then tracked in time on an automatically estimated ground plane. The system runs in real-time, at a frame-rate of about 20 fps. We collected a dataset of RGB-D sequences representing three typical and challenging surveillance scenarios, including crowds, queuing and groups. An extensive comparative evaluation is given between our system and more complex, Latent SVM-based head localization for person counting applications.
Address Seoul; Korea; August 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AVSS
Notes LAMP; 600.079 Approved no
Call Number Admin @ si @ BSB2014 Serial 2540
Permanent link to this record
 

 
Author (up) Eloi Puertas; Miguel Angel Bautista; Daniel Sanchez; Sergio Escalera; Oriol Pujol
Title Learning to Segment Humans by Stacking their Body Parts, Type Conference Article
Year 2014 Publication ECCV Workshop on ChaLearn Looking at People Abbreviated Journal
Volume 8925 Issue Pages 685-697
Keywords Human body segmentation; Stacked Sequential Learning
Abstract Human segmentation in still images is a complex task due to the wide range of body poses and drastic changes in environmental conditions. Usually, human body segmentation is treated in a two-stage fashion. First, a human body part detection step is performed, and then, human part detections are used as prior knowledge to be optimized by segmentation strategies. In this paper, we present a two-stage scheme based on Multi-Scale Stacked Sequential Learning (MSSL). We define an extended feature set by stacking a multi-scale decomposition of body
part likelihood maps. These likelihood maps are obtained in a first stage
by means of a ECOC ensemble of soft body part detectors. In a second stage, contextual relations of part predictions are learnt by a binary classifier, obtaining an accurate body confidence map. The obtained confidence map is fed to a graph cut optimization procedure to obtain the final segmentation. Results show improved segmentation when MSSL is included in the human segmentation pipeline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ PBS2014 Serial 2553
Permanent link to this record
 

 
Author (up) Enric Marti; Antoni Gurgui; Debora Gil; Aura Hernandez-Sabate; Jaume Rocarias; Ferran Poveda
Title ABP on line: Seguimiento, estregas y evaluación en aprendizaje basado en proyectos Type Miscellaneous
Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Tarragona; juliol 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIDUI
Notes IAM; ADAS; 600.076; 600.063; 600.075 Approved no
Call Number Admin @ si @ MGG2014 Serial 2457
Permanent link to this record
 

 
Author (up) Fahad Shahbaz Khan; Joost Van de Weijer; Andrew Bagdanov; Michael Felsberg
Title Scale Coding Bag-of-Words for Action Recognition Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 1514-1519
Keywords
Abstract Recognizing human actions in still images is a challenging problem in computer vision due to significant amount of scale, illumination and pose variation. Given the bounding box of a person both at training and test time, the task is to classify the action associated with each bounding box in an image.
Most state-of-the-art methods use the bag-of-words paradigm for action recognition. The bag-of-words framework employing a dense multi-scale grid sampling strategy is the de facto standard for feature detection. This results in a scale invariant image representation where all the features at multiple-scales are binned in a single histogram. We argue that such a scale invariant
strategy is sub-optimal since it ignores the multi-scale information
available with each bounding box of a person.
This paper investigates alternative approaches to scale coding for action recognition in still images. We encode multi-scale information explicitly in three different histograms for small, medium and large scale visual-words. Our first approach exploits multi-scale information with respect to the image size. In our second approach, we encode multi-scale information relative to the size of the bounding box of a person instance. In each approach, the multi-scale histograms are then concatenated into a single representation for action classification. We validate our approaches on the Willow dataset which contains seven action categories: interacting with computer, photography, playing music,
riding bike, riding horse, running and walking. Our results clearly suggest that the proposed scale coding approaches outperform the conventional scale invariant technique. Moreover, we show that our approach obtains promising results compared to more complex state-of-the-art methods.
Address Stockholm; August 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes CIC; LAMP; 601.240; 600.074; 600.079 Approved no
Call Number Admin @ si @ KWB2014 Serial 2450
Permanent link to this record
 

 
Author (up) Fahad Shahbaz Khan; Joost Van de Weijer; Muhammad Anwer Rao; Michael Felsberg; Carlo Gatta
Title Semantic Pyramids for Gender and Action Recognition Type Journal Article
Year 2014 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 23 Issue 8 Pages 3633-3645
Keywords
Abstract Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes CIC; LAMP; 601.160; 600.074; 600.079;MILAB Approved no
Call Number Admin @ si @ KWR2014 Serial 2507
Permanent link to this record
 

 
Author (up) Fahad Shahbaz Khan; Shida Beigpour; Joost Van de Weijer; Michael Felsberg
Title Painting-91: A Large Scale Database for Computational Painting Categorization Type Journal Article
Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 25 Issue 6 Pages 1385-1397
Keywords
Abstract Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0932-8092 ISBN Medium
Area Expedition Conference
Notes CIC; LAMP; 600.074; 600.079 Approved no
Call Number Admin @ si @ KBW2014 Serial 2510
Permanent link to this record
 

 
Author (up) Federico Bartoli; Giuseppe Lisanti; Svebor Karaman; Andrew Bagdanov; Alberto del Bimbo
Title Unsupervised scene adaptation for faster multi- scale pedestrian detection Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3534 - 3539
Keywords
Abstract
Address Stockholm; Sweden; August 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; 600.079 Approved no
Call Number Admin @ si @ BLK2014 Serial 2519
Permanent link to this record
 

 
Author (up) Francesco Brughi; Debora Gil; Llorenç Badiella; Eva Jove Casabella; Oriol Ramos Terrades
Title Exploring the impact of inter-query variability on the performance of retrieval systems Type Conference Article
Year 2014 Publication 11th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 8814 Issue Pages 413–420
Keywords
Abstract This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes.
Address Algarve; Portugal; October 2014
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-319-11757-7 Medium
Area Expedition Conference ICIAR
Notes IAM; DAG; 600.060; 600.061; 600.077; 600.075 Approved no
Call Number Admin @ si @ BGB2014 Serial 2559
Permanent link to this record
 

 
Author (up) Francesco Ciompi; Oriol Pujol; Petia Radeva
Title ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 6 Pages 2193-2204
Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models
Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no
Call Number Admin @ si @ CPR2014b Serial 2470
Permanent link to this record
 

 
Author (up) Francisco Blanco; Felipe Lumbreras; Joan Serrat; Roswitha Siener; Silvia Serranti; Giuseppe Bonifazi; Montserrat Lopez Mesas; Manuel Valiente
Title Taking advantage of Hyperspectral Imaging classification of urinary stones against conventional IR Spectroscopy Type Journal Article
Year 2014 Publication Journal of Biomedical Optics Abbreviated Journal JBiO
Volume 19 Issue 12 Pages 126004-1 - 126004-9
Keywords
Abstract The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ BLS2014 Serial 2563
Permanent link to this record
 

 
Author (up) Francisco Cruz; Oriol Ramos Terrades
Title EM-Based Layout Analysis Method for Structured Documents Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 315-320
Keywords
Abstract In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according
to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 602.006; 600.061; 600.077 Approved no
Call Number Admin @ si @ CrR2014 Serial 2530
Permanent link to this record
 

 
Author (up) Frederic Sampedro; Anna Domenech; Sergio Escalera
Title Obtaining quantitative global tumoral state indicators based on whole-body PET/CT scans: A breast cancer case study Type Journal Article
Year 2014 Publication Nuclear Medicine Communications Abbreviated Journal NMC
Volume 35 Issue 4 Pages 362-371
Keywords
Abstract Objectives: In this work we address the need for the computation of quantitative global tumoral state indicators from oncological whole-body PET/computed tomography scans. The combination of such indicators with other oncological information such as tumor markers or biopsy results would prove useful in oncological decision-making scenarios.

Materials and methods: From an ordering of 100 breast cancer patients on the basis of oncological state through visual analysis by a consensus of nuclear medicine specialists, a set of numerical indicators computed from image analysis of the PET/computed tomography scan is presented, which attempts to summarize a patient’s oncological state in a quantitative manner taking into consideration the total tumor volume, aggressiveness, and spread.

Results: Results obtained by comparative analysis of the proposed indicators with respect to the experts’ evaluation show up to 87% Pearson’s correlation coefficient when providing expert-guided PET metabolic tumor volume segmentation and 64% correlation when using completely automatic image analysis techniques.

Conclusion: Global quantitative tumor information obtained by whole-body PET/CT image analysis can prove useful in clinical nuclear medicine settings and oncological decision-making scenarios. The completely automatic computation of such indicators would improve its impact as time efficiency and specialist independence would be achieved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number SDE2014a Serial 2444
Permanent link to this record
 

 
Author (up) Frederic Sampedro; Anna Domenech; Sergio Escalera
Title Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans Type Journal Article
Year 2014 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI
Volume 4 Issue 6 Pages 825-831
Keywords CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION
Abstract In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SDE2014b Serial 2548
Permanent link to this record
 

 
Author (up) Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio
Title A computational framework for cancer response assessment based on oncological PET-CT scans Type Journal Article
Year 2014 Publication Computers in Biology and Medicine Abbreviated Journal CBM
Volume 55 Issue Pages 92–99
Keywords Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis
Abstract In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SED2014 Serial 2606
Permanent link to this record
 

 
Author (up) Frederic Sampedro; Sergio Escalera; Anna Puig
Title Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation Type Journal Article
Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 46 Issue Pages 1-10
Keywords Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation
Abstract In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SEP2014 Serial 2550
Permanent link to this record