|   | 
Details
   web
Records
Author (up) Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny
Title Efficient indexing for Query By String text retrieval Type Conference Article
Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal
Volume Issue Pages 1236 - 1240
Keywords
Abstract This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
Address Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CBDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ GGK2015 Serial 2693
Permanent link to this record
 

 
Author (up) Sumit K. Banchhor; Narendra D. Londhe; Tadashi Araki; Luca Saba; Petia Radeva; Narendra N. Khanna; Jasjit S. Suri
Title Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. Type Journal Article
Year 2018 Publication Computers in Biology and Medicine Abbreviated Journal CBM
Volume 101 Issue Pages 184-198
Keywords Heart disease; Stroke; Atherosclerosis; Intravascular; Coronary; Carotid; Calcium; Morphology; Risk stratification
Abstract Purpose of review

Atherosclerosis is the leading cause of cardiovascular disease (CVD) and stroke. Typically, atherosclerotic calcium is found during the mature stage of the atherosclerosis disease. It is therefore often a challenge to identify and quantify the calcium. This is due to the presence of multiple components of plaque buildup in the arterial walls. The American College of Cardiology/American Heart Association guidelines point to the importance of calcium in the coronary and carotid arteries and further recommend its quantification for the prevention of heart disease. It is therefore essential to stratify the CVD risk of the patient into low- and high-risk bins.
Recent finding

Calcium formation in the artery walls is multifocal in nature with sizes at the micrometer level. Thus, its detection requires high-resolution imaging. Clinical experience has shown that even though optical coherence tomography offers better resolution, intravascular ultrasound still remains an important imaging modality for coronary wall imaging. For a computer-based analysis system to be complete, it must be scientifically and clinically validated. This study presents a state-of-the-art review (condensation of 152 publications after examining 200 articles) covering the methods for calcium detection and its quantification for coronary and carotid arteries, the pros and cons of these methods, and the risk stratification strategies. The review also presents different kinds of statistical models and gold standard solutions for the evaluation of software systems useful for calcium detection and quantification. Finally, the review concludes with a possible vision for designing the next-generation system for better clinical outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ BLA2018 Serial 3188
Permanent link to this record
 

 
Author (up) Sumit K. Banchhor; Tadashi Araki; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Ayman El-Baz; Luca Saba; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri
Title Five multiresolution-based calcium volume measurement techniques from coronary IVUS videos: A comparative approach Type Journal Article
Year 2016 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 134 Issue Pages 237-258
Keywords
Abstract BACKGROUND AND OBJECTIVE:
Fast intravascular ultrasound (IVUS) video processing is required for calcium volume computation during the planning phase of percutaneous coronary interventional (PCI) procedures. Nonlinear multiresolution techniques are generally applied to improve the processing time by down-sampling the video frames.
METHODS:
This paper presents four different segmentation methods for calcium volume measurement, namely Threshold-based, Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) embedded with five different kinds of multiresolution techniques (bilinear, bicubic, wavelet, Lanczos, and Gaussian pyramid). This leads to 20 different kinds of combinations. IVUS image data sets consisting of 38,760 IVUS frames taken from 19 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/sec.). The performance of these 20 systems is compared with and without multiresolution using the following metrics: (a) computational time; (b) calcium volume; (c) image quality degradation ratio; and (d) quality assessment ratio.
RESULTS:
Among the four segmentation methods embedded with five kinds of multiresolution techniques, FCM segmentation combined with wavelet-based multiresolution gave the best performance. FCM and wavelet experienced the highest percentage mean improvement in computational time of 77.15% and 74.07%, respectively. Wavelet interpolation experiences the highest mean precision-of-merit (PoM) of 94.06 ± 3.64% and 81.34 ± 16.29% as compared to other multiresolution techniques for volume level and frame level respectively. Wavelet multiresolution technique also experiences the highest Jaccard Index and Dice Similarity of 0.7 and 0.8, respectively. Multiresolution is a nonlinear operation which introduces bias and thus degrades the image. The proposed system also provides a bias correction approach to enrich the system, giving a better mean calcium volume similarity for all the multiresolution-based segmentation methods. After including the bias correction, bicubic interpolation gives the largest increase in mean calcium volume similarity of 4.13% compared to the rest of the multiresolution techniques. The system is automated and can be adapted in clinical settings.
CONCLUSIONS:
We demonstrated the time improvement in calcium volume computation without compromising the quality of IVUS image. Among the 20 different combinations of multiresolution with calcium volume segmentation methods, the FCM embedded with wavelet-based multiresolution gave the best performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ BAL2016 Serial 2830
Permanent link to this record
 

 
Author (up) Susana Alvarez
Title Revisión de la teoría de los Textons Enfoque computacional en color Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract El color y la textura son dos estímulos visuales importantes para la interpretación de las imágenes. La definición de descriptores computacionales que combinan estas dos características es aún un problema abierto. La dificultad se deriva esencialmente de la propia naturaleza de ambas, mientras que la textura es una propiedad de una región, el color es una propiedad de un punto.

Hasta ahora se han utilizado tres los tipos de aproximaciones para la combinación, (a) se describe la textura directamente en cada uno de los canales color, (b) se describen textura y color por separado y se combinan al final, y (c) la combinación se realiza con técnicas de aprendizaje automático. Considerando que este problema se resuelve en el sistema visual humano en niveles muy tempranos, en esta tesis se propone estudiar el problema a partir de la implementación directa de una teoría perceptual, la teoría de los textons, y explorar así su extensión a color.

Puesto que la teoría de los textons se basa en la descripción de la textura a partir de las densidades de los atributos locales, esto se adapta perfectamente al marco de trabajo de los descriptores holísticos (bag-of-words). Se han estudiado diversos descriptores basados en diferentes espacios de textons, y diferentes representaciones de las imágenes. Asimismo se ha estudiado la viabilidad de estos descriptores en una representación conceptual de nivel intermedio.

Los descriptores propuestos han demostrado ser muy eficientes en aplicaciones de recuperación y clasificación de imágenes, presentando ventajas en la generación de vocabularios. Los vocabularios se obtienen cuantificando directamente espacios de baja dimensión y la perceptualidad de estos espacios permite asociar semántica de bajo nivel a las palabras visuales. El estudio de los resultados permite concluir que si bien la aproximación holística es muy eficiente, la introducción de co-ocurrencia espacial de las propiedades de forma y color de los blobs de la imagen es un elemento clave para su combinación, hecho que no contradice las evidencias en percepción
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Xavier Otazu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Alv2012b Serial 2216
Permanent link to this record
 

 
Author (up) Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title 3D Texton Spaces for color-texture retrieval Type Conference Article
Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 6111 Issue Pages 354–363
Keywords
Abstract Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest problem by fusing color and texture through distances in texton spaces. Textons are the attributes of image blobs and they are responsible for texture discrimination as defined in Julesz’s Texton theory. We describe them in two low-dimensional and uniform spaces, namely, shape and color. The dissimilarity between color texture images is computed by combining the distances in these two spaces. Following this approach, we propose our TCD descriptor which outperforms current state of art methods in the two different approaches mentioned above, early combination with LBP and late combination with MPEG-7. This is done on an image retrieval experiment over a highly diverse texture dataset from Corel.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor A.C. Campilho and M.S. Kamel
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium
Area Expedition Conference ICIAR
Notes CIC Approved no
Call Number CAT @ cat @ ASV2010a Serial 1325
Permanent link to this record
 

 
Author (up) Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title Perceptual color texture codebooks for retrieving in highly diverse texture datasets Type Conference Article
Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 866–869
Keywords
Abstract Color and texture are visual cues of different nature, their integration in a useful visual descriptor is not an obvious step. One way to combine both features is to compute texture descriptors independently on each color channel. A second way is integrate the features at a descriptor level, in this case arises the problem of normalizing both cues. A significant progress in the last years in object recognition has provided the bag-of-words framework that again deals with the problem of feature combination through the definition of vocabularies of visual words. Inspired in this framework, here we present perceptual textons that will allow to fuse color and texture at the level of p-blobs, which is our feature detection step. Feature representation is based on two uniform spaces representing the attributes of the p-blobs. The low-dimensionality of these text on spaces will allow to bypass the usual problems of previous approaches. Firstly, no need for normalization between cues; and secondly, vocabularies are directly obtained from the perceptual properties of text on spaces without any learning step. Our proposal improve current state-of-art of color-texture descriptors in an image retrieval experiment over a highly diverse texture dataset from Corel.
Address Istanbul (Turkey)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium
Area Expedition Conference ICPR
Notes CIC Approved no
Call Number CAT @ cat @ ASV2010b Serial 1426
Permanent link to this record
 

 
Author (up) Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 116 Issue I Pages 54-67
Keywords
Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-3142 ISBN Medium
Area Expedition Conference
Notes CAT;CIC Approved no
Call Number Admin @ si @ ASV2012 Serial 1827
Permanent link to this record
 

 
Author (up) Susana Alvarez; Maria Vanrell
Title Texton theory revisited: a bag-of-words approach to combine textons Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue 12 Pages 4312-4325
Keywords
Abstract The aim of this paper is to revisit an old theory of texture perception and
update its computational implementation by extending it to colour. With this in mind we try to capture the optimality of perceptual systems. This is achieved in the proposed approach by sharing well-known early stages of the visual processes and extracting low-dimensional features that perfectly encode adequate properties for a large variety of textures without needing further learning stages. We propose several descriptors in a bag-of-words framework that are derived from different quantisation models on to the feature spaces. Our perceptual features are directly given by the shape and colour attributes of image blobs, which are the textons. In this way we avoid learning visual words and directly build the vocabularies on these lowdimensionaltexton spaces. Main differences between proposed descriptors rely on how co-occurrence of blob attributes is represented in the vocabularies. Our approach overcomes current state-of-art in colour texture description which is proved in several experiments on large texture datasets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ AlV2012a Serial 2130
Permanent link to this record
 

 
Author (up) Susana Alvarez; Xavier Otazu; Maria Vanrell
Title Image Segmentation Based on Inter-Feature Distance Maps Type Book Chapter
Year 2005 Publication Frontiers in Artificial Intelligence and Applications, IOS Press, 131: 75–82 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ AOV2005 Serial 569
Permanent link to this record
 

 
Author (up) Svebor Karaman; Andrew Bagdanov; Lea Landucci; Gianpaolo D'Amico; Andrea Ferracani; Daniele Pezzatini; Alberto del Bimbo
Title Personalized multimedia content delivery on an interactive table by passive observation of museum visitors Type Journal Article
Year 2016 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 75 Issue 7 Pages 3787-3811
Keywords Computer vision; Video surveillance; Cultural heritage; Multimedia museum; Personalization; Natural interaction; Passive profiling
Abstract The amount of multimedia data collected in museum databases is growing fast, while the capacity of museums to display information to visitors is acutely limited by physical space. Museums must seek the perfect balance of information given on individual pieces in order to provide sufficient information to aid visitor understanding while maintaining sparse usage of the walls and guaranteeing high appreciation of the exhibit. Moreover, museums often target the interests of average visitors instead of the entire spectrum of different interests each individual visitor might have. Finally, visiting a museum should not be an experience contained in the physical space of the museum but a door opened onto a broader context of related artworks, authors, artistic trends, etc. In this paper we describe the MNEMOSYNE system that attempts to address these issues through a new multimedia museum experience. Based on passive observation, the system builds a profile of the artworks of interest for each visitor. These profiles of interest are then used to drive an interactive table that personalizes multimedia content delivery. The natural user interface on the interactive table uses the visitor’s profile, an ontology of museum content and a recommendation system to personalize exploration of multimedia content. At the end of their visit, the visitor can take home a personalized summary of their visit on a custom mobile application. In this article we describe in detail each component of our approach as well as the first field trials of our prototype system built and deployed at our permanent exhibition space at LeMurate (http://www.lemurate.comune.fi.it/lemurate/) in Florence together with the first results of the evaluation process during the official installation in the National Museum of Bargello (http://www.uffizi.firenze.it/musei/?m=bargello).
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1380-7501 ISBN Medium
Area Expedition Conference
Notes LAMP; 601.240; 600.079 Approved no
Call Number Admin @ si @ KBL2016 Serial 2520
Permanent link to this record
 

 
Author (up) Svebor Karaman; Giuseppe Lisanti; Andrew Bagdanov; Alberto del Bimbo
Title From re-identification to identity inference: Labeling consistency by local similarity constraints Type Book Chapter
Year 2014 Publication Person Re-Identification Abbreviated Journal
Volume 2 Issue Pages 287-307
Keywords re-identification; Identity inference; Conditional random fields; Video surveillance
Abstract In this chapter, we introduce the problem of identity inference as a generalization of person re-identification. It is most appropriate to distinguish identity inference from re-identification in situations where a large number of observations must be identified without knowing a priori that groups of test images represent the same individual. The standard single- and multishot person re-identification common in the literature are special cases of our formulation. We present an approach to solving identity inference by modeling it as a labeling problem in a Conditional Random Field (CRF). The CRF model ensures that the final labeling gives similar labels to detections that are similar in feature space. Experimental results are given on the ETHZ, i-LIDS and CAVIAR datasets. Our approach yields state-of-the-art performance for multishot re-identification, and our results on the more general identity inference problem demonstrate that we are able to infer the identity of very many examples even with very few labeled images in the gallery.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2191-6586 ISBN 978-1-4471-6295-7 Medium
Area Expedition Conference
Notes LAMP; 600.079 Approved no
Call Number Admin @ si @KLB2014b Serial 2521
Permanent link to this record
 

 
Author (up) Svebor Karaman; Giuseppe Lisanti; Andrew Bagdanov; Alberto del Bimbo
Title Leveraging local neighborhood topology for large scale person re-identification Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 12 Pages 3767–3778
Keywords Re-identification; Conditional random field; Semi-supervised; ETHZ; CAVIAR; 3DPeS; CMV100
Abstract In this paper we describe a semi-supervised approach to person re-identification that combines discriminative models of person identity with a Conditional Random Field (CRF) to exploit the local manifold approximation induced by the nearest neighbor graph in feature space. The linear discriminative models learned on few gallery images provides coarse separation of probe images into identities, while a graph topology defined by distances between all person images in feature space leverages local support for label propagation in the CRF. We evaluate our approach using multiple scenarios on several publicly available datasets, where the number of identities varies from 28 to 191 and the number of images ranges between 1003 and 36 171. We demonstrate that the discriminative model and the CRF are complementary and that the combination of both leads to significant improvement over state-of-the-art approaches. We further demonstrate how the performance of our approach improves with increasing test data and also with increasing amounts of additional unlabeled data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 601.240; 600.079 Approved no
Call Number Admin @ si @ KLB2014a Serial 2522
Permanent link to this record
 

 
Author (up) Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title LSTA: Long Short-Term Attention for Egocentric Action Recognition Type Conference Article
Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 9946-9955
Keywords
Abstract Egocentric activity recognition is one of the most challenging tasks in video analysis. It requires a fine-grained discrimination of small objects and their manipulation. While some methods base on strong supervision and attention mechanisms, they are either annotation consuming or do not take spatio-temporal patterns into account. In this paper we propose LSTA as a mechanism to focus on features from spatial relevant parts while attention is being tracked smoothly across the video sequence. We demonstrate the effectiveness of LSTA on egocentric activity recognition with an end-to-end trainable two-stream architecture, achieving state-of-the-art performance on four standard benchmarks.
Address California; June 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ SEL2019 Serial 3333
Permanent link to this record
 

 
Author (up) Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title Gate-Shift Networks for Video Action Recognition Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ SEL2020 Serial 3438
Permanent link to this record
 

 
Author (up) Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title Gate-Shift-Fuse for Video Action Recognition Type Journal Article
Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 45 Issue 9 Pages 10913-10928
Keywords Action Recognition; Video Classification; Spatial Gating; Channel Fusion
Abstract Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks.
Address 1 Sept. 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ SEL2023 Serial 3814
Permanent link to this record