Laura Lopez-Fuentes, Andrew Bagdanov, Joost Van de Weijer, & Harald Skinnemoen. (2017). Bandwidth Limited Object Recognition in High Resolution Imagery. In IEEE Winter conference on Applications of Computer Vision.
Abstract: This paper proposes a novel method to optimize bandwidth usage for object detection in critical communication scenarios. We develop two operating models of active information seeking. The first model identifies promising regions in low resolution imagery and progressively requests higher resolution regions on which to perform recognition of higher semantic quality. The second model identifies promising regions in low resolution imagery while simultaneously predicting the approximate location of the object of higher semantic quality. From this general framework, we develop a car recognition system via identification of its license plate and evaluate the performance of both models on a car dataset that we introduce. Results are compared with traditional JPEG compression and demonstrate that our system saves up to one order of magnitude of bandwidth while sacrificing little in terms of recognition performance.
|
Laura Lopez-Fuentes, Joost Van de Weijer, Manuel Gonzalez-Hidalgo, Harald Skinnemoen, & Andrew Bagdanov. (2018). Review on computer vision techniques in emergency situations. MTAP - Multimedia Tools and Applications, 77(13), 17069–17107.
Abstract: In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.
Keywords: Emergency management; Computer vision; Decision makers; Situational awareness; Critical situation
|
Laura Lopez-Fuentes, Joost Van de Weijer, Marc Bolaños, & Harald Skinnemoen. (2017). Multi-modal Deep Learning Approach for Flood Detection. In MediaEval Benchmarking Initiative for Multimedia Evaluation.
Abstract: In this paper we propose a multi-modal deep learning approach to detect floods in social media posts. Social media posts normally contain some metadata and/or visual information, therefore in order to detect the floods we use this information. The model is based on a Convolutional Neural Network which extracts the visual features and a bidirectional Long Short-Term Memory network to extract the semantic features from the textual metadata. We validate the
method on images extracted from Flickr which contain both visual information and metadata and compare the results when using both, visual information only or metadata only. This work has been done in the context of the MediaEval Multimedia Satellite Task.
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Synthetic Data Generation for End-to-End Thermal Infrared Tracking. TIP - IEEE Transactions on Image Processing, 28(4), 1837–1850.
Abstract: The usage of both off-the-shelf and end-to-end trained deep networks have significantly improved the performance of visual tracking on RGB videos. However, the lack of large labeled datasets hampers the usage of convolutional neural networks for tracking in thermal infrared (TIR) images. Therefore, most state-of-the-art methods on tracking for TIR data are still based on handcrafted features. To address this problem, we propose to use image-to-image translation models. These models allow us to translate the abundantly available labeled RGB data to synthetic TIR data. We explore both the usage of paired and unpaired image translation models for this purpose. These methods provide us with a large labeled dataset of synthetic TIR sequences, on which we can train end-to-end optimal features for tracking. To the best of our knowledge, we are the first to train end-to-end features for TIR tracking. We perform extensive experiments on the VOT-TIR2017 dataset. We show that a network trained on a large dataset of synthetic TIR data obtains better performance than one trained on the available real TIR data. Combining both data sources leads to further improvement. In addition, when we combine the network with motion features, we outperform the state of the art with a relative gain of over 10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR trackers.
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Learning the Model Update for Siamese Trackers. In 18th IEEE International Conference on Computer Vision (pp. 4009–4018).
Abstract: Siamese approaches address the visual tracking problem by extracting an appearance template from the current frame, which is used to localize the target in the next frame. In general, this template is linearly combined with the accumulated template from the previous frame, resulting in an exponential decay of information over time. While such an approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. Therefore, we propose to replace the handcrafted update function with a method which learns to update. We use a convolutional neural network, called UpdateNet, which given the initial template, the accumulated template and the template of the current frame aims to estimate the optimal template for the next frame. The UpdateNet is compact and can easily be integrated into existing Siamese trackers. We demonstrate the generality of the proposed approach by applying it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our UpdateNet effectively predicts the new target template, outperforming the standard linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the results of DaSiamRPN with an absolute gain of 3.9% in terms of success score.
|
Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2019). Multi-Modal Fusion for End-to-End RGB-T Tracking. In IEEE International Conference on Computer Vision Workshops (pp. 2252–2261).
Abstract: We propose an end-to-end tracking framework for fusing the RGB and TIR modalities in RGB-T tracking. Our baseline tracker is DiMP (Discriminative Model Prediction), which employs a carefully designed target prediction network trained end-to-end using a discriminative loss. We analyze the effectiveness of modality fusion in each of the main components in DiMP, i.e. feature extractor, target estimation network, and classifier. We consider several fusion mechanisms acting at different levels of the framework, including pixel-level, feature-level and response-level. Our tracker is trained in an end-to-end manner, enabling the components to learn how to fuse the information from both modalities. As data to train our model, we generate a large-scale RGB-T dataset by considering an annotated RGB tracking dataset (GOT-10k) and synthesizing paired TIR images using an image-to-image translation approach. We perform extensive experiments on VOT-RGBT2019 dataset and RGBT210 dataset, evaluating each type of modality fusing on each model component. The results show that the proposed fusion mechanisms improve the performance of the single modality counterparts. We obtain our best results when fusing at the feature-level on both the IoU-Net and the model predictor, obtaining an EAO score of 0.391 on VOT-RGBT2019 dataset. With this fusion mechanism we achieve the state-of-the-art performance on RGBT210 dataset.
|
Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmai Cheng, et al. (2020). Semantic Drift Compensation for Class-Incremental Learning of Embeddings. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.
|
Lu Yu, Lichao Zhang, Joost Van de Weijer, Fahad Shahbaz Khan, Yongmei Cheng, & C. Alejandro Parraga. (2018). Beyond Eleven Color Names for Image Understanding. MVAP - Machine Vision and Applications, 29(2), 361–373.
Abstract: Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.
Keywords: Color name; Discriminative descriptors; Image classification; Re-identification; Tracking
|
Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van de Weijer, Yongmei Cheng, & Arnau Ramisa. (2019). Learning Metrics from Teachers: Compact Networks for Image Embedding. In 32nd IEEE Conference on Computer Vision and Pattern Recognition (pp. 2907–2916).
Abstract: Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
|
Lu Yu, Xialei Liu, & Joost Van de Weijer. (2022). Self-Training for Class-Incremental Semantic Segmentation. TNNLS - IEEE Transactions on Neural Networks and Learning Systems, .
Abstract: In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.
Keywords: Class-incremental learning; Self-training; Semantic segmentation.
|
Lu Yu, Yongmei Cheng, & Joost Van de Weijer. (2018). Weakly Supervised Domain-Specific Color Naming Based on Attention. In 24th International Conference on Pattern Recognition (pp. 3019–3024).
Abstract: The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
|
M. Danelljan, Fahad Shahbaz Khan, Michael Felsberg, & Joost Van de Weijer. (2014). Adaptive color attributes for real-time visual tracking. In 27th IEEE Conference on Computer Vision and Pattern Recognition (pp. 1090–1097).
Abstract: Visual tracking is a challenging problem in computer vision. Most state-of-the-art visual trackers either rely on luminance information or use simple color representations for image description. Contrary to visual tracking, for object
recognition and detection, sophisticated color features when combined with luminance have shown to provide excellent performance. Due to the complexity of the tracking problem, the desired color feature should be computationally
efficient, and possess a certain amount of photometric invariance while maintaining high discriminative power.
This paper investigates the contribution of color in a tracking-by-detection framework. Our results suggest that color attributes provides superior performance for visual tracking. We further propose an adaptive low-dimensional
variant of color attributes. Both quantitative and attributebased evaluations are performed on 41 challenging benchmark color sequences. The proposed approach improves the baseline intensity-based tracker by 24% in median distance precision. Furthermore, we show that our approach outperforms
state-of-the-art tracking methods while running at more than 100 frames per second.
|
M. Gonzalez-Audicana, Xavier Otazu, O. Fors, & A. Seco. (2005). Comparison between Mallats and the trous discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. International Journal of Remote Sensing, 26(3):595–614 (IF: 0.925).
|
M. Gonzalez-Audicana, Xavier Otazu, O. Fors, R Garcia, & J. Nuñez. (2002). Fusion of different spatial and spectral resolution images: development, apllication and comparison of new methods based on wavelets..
|
M. Li, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2020). Learning to Rank for Active Learning: A Listwise Approach. In 25th International Conference on Pattern Recognition (pp. 5587–5594).
Abstract: Active learning emerged as an alternative to alleviate the effort to label huge amount of data for data hungry applications (such as image/video indexing and retrieval, autonomous driving, etc.). The goal of active learning is to automatically select a number of unlabeled samples for annotation (according to a budget), based on an acquisition function, which indicates how valuable a sample is for training the model. The learning loss method is a task-agnostic approach which attaches a module to learn to predict the target loss of unlabeled data, and select data with the highest loss for labeling. In this work, we follow this strategy but we define the acquisition function as a learning to rank problem and rethink the structure of the loss prediction module, using a simple but effective listwise approach. Experimental results on four datasets demonstrate that our method outperforms recent state-of-the-art active learning approaches for both image classification and regression tasks.
|
Marc Masana, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). On Class Orderings for Incremental Learning. In ICML Workshop on Continual Learning.
Abstract: The influence of class orderings in the evaluation of incremental learning has received very little attention. In this paper, we investigate the impact of class orderings for incrementally learned classifiers. We propose a method to compute various orderings for a dataset. The orderings are derived by simulated annealing optimization from the confusion matrix and reflect different incremental learning scenarios, including maximally and minimally confusing tasks. We evaluate a wide range of state-of-the-art incremental learning methods on the proposed orderings. Results show that orderings can have a significant impact on performance and the ranking of the methods.
|
Marc Masana, Idoia Ruiz, Joan Serrat, Joost Van de Weijer, & Antonio Lopez. (2018). Metric Learning for Novelty and Anomaly Detection. In 29th British Machine Vision Conference.
Abstract: When neural networks process images which do not resemble the distribution seen during training, so called out-of-distribution images, they often make wrong predictions, and do so too confidently. The capability to detect out-of-distribution images is therefore crucial for many real-world applications. We divide out-of-distribution detection between novelty detection ---images of classes which are not in the training set but are related to those---, and anomaly detection ---images with classes which are unrelated to the training set. By related we mean they contain the same type of objects, like digits in MNIST and SVHN. Most existing work has focused on anomaly detection, and has addressed this problem considering networks trained with the cross-entropy loss. Differently from them, we propose to use metric learning which does not have the drawback of the softmax layer (inherent to cross-entropy methods), which forces the network to divide its prediction power over the learned classes. We perform extensive experiments and evaluate both novelty and anomaly detection, even in a relevant application such as traffic sign recognition, obtaining comparable or better results than previous works.
|
Marc Masana, Joost Van de Weijer, & Andrew Bagdanov. (2016). On-the-fly Network pruning for object detection. In International conference on learning representations.
Abstract: Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. We show that removing units which have near-zero activation in the image allows us to significantly reduce the number of parameters in the network. Results on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of units in some fully-connected layers can be entirely eliminated with little change in the detection result.
|