Aleksandr Setkov, Fabio Martinez Carillo, Michele Gouiffes, Christian Jacquemin, Maria Vanrell, & Ramon Baldrich. (2015). DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition. In Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II (Vol. 9475, pp. 463–473). LNCS. Springer International Publishing.
Abstract: Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.
Keywords: Projector-camera systems; Feature descriptors; Object recognition
|
|
Alex Gomez-Villa, Adrian Martin, Javier Vazquez, Marcelo Bertalmio, & Jesus Malo. (2022). On the synthesis of visual illusions using deep generative models. JOV - Journal of Vision, 22(8)(2), 1–18.
Abstract: Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
|
|
Alex Gomez-Villa, Bartlomiej Twardowski, Lu Yu, Andrew Bagdanov, & Joost Van de Weijer. (2022). Continually Learning Self-Supervised Representations With Projected Functional Regularization. In CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) (pp. 3866–3876).
Abstract: Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised approaches. However, these methods are unable to acquire new knowledge incrementally – they are, in fact, mostly used only as a pre-training phase over IID data. In this work we investigate self-supervised methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,also known as feature distillation, leads to lower plasticity and limits continual learning performance. Instead, we propose Projected Functional Regularization in which a separate temporal projection network ensures that the newly learned feature space preserves information of the previous one, while at the same time allowing for the learning of new features. This prevents forgetting while maintaining the plasticity of the learner. Comparison with other incremental learning approaches applied to self-supervision demonstrates that our method obtains competitive performance in
different scenarios and on multiple datasets.
Keywords: Computer vision; Conferences; Self-supervised learning; Image representation; Pattern recognition
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez, Xavier Otazu, & Horst Bunke. (2010). A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores. IJDAR - International Journal on Document Analysis and Recognition, 13(4), 243–259.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
|
|
Alicia Fornes, Xavier Otazu, & Josep Llados. (2013). Show through cancellation and image enhancement by multiresolution contrast processing. In 12th International Conference on Document Analysis and Recognition (pp. 200–204).
Abstract: Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.
|
|
Anna Salvatella, & Maria Vanrell. (2002). Towards a texture representation database.
|
|
Anna Salvatella, Maria Vanrell, & Juan J. Villanueva. (2003). Texture Description based on Subtexture Components, 3rd International Workshop on Texture Syntesis and Analysis. In 3rd International Workshop on Texture Synthesis and Analysis, (77–82).
|
|
Anna Salvatella, Maria Vanrell, & Ramon Baldrich. (2003). Subtexture Components for Texture Description. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 884–892). LNCS.
|
|
Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu, & Joost Van de Weijer. (2023). Projected Latent Distillation for Data-Agnostic Consolidation in Distributed Continual Learning.
Abstract: Distributed learning on the edge often comprises self-centered devices (SCD) which learn local tasks independently and are unwilling to contribute to the performance of other SDCs. How do we achieve forward transfer at zero cost for the single SCDs? We formalize this problem as a Distributed Continual Learning scenario, where SCD adapt to local tasks and a CL model consolidates the knowledge from the resulting stream of models without looking at the SCD's private data. Unfortunately, current CL methods are not directly applicable to this scenario. We propose Data-Agnostic Consolidation (DAC), a novel double knowledge distillation method that consolidates the stream of SC models without using the original data. DAC performs distillation in the latent space via a novel Projected Latent Distillation loss. Experimental results show that DAC enables forward transfer between SCDs and reaches state-of-the-art accuracy on Split CIFAR100, CORe50 and Split TinyImageNet, both in reharsal-free and distributed CL scenarios. Somewhat surprisingly, even a single out-of-distribution image is sufficient as the only source of data during consolidation.
|
|
Antonio Lopez, J. Hilgenstock, A. Busse, Ramon Baldrich, Felipe Lumbreras, & Joan Serrat. (2008). Nightime Vehicle Detecion for Intelligent Headlight Control. In Advanced Concepts for Intelligent Vision Systems, 10th International Conference, Proceedings, (Vol. 5259, 113–124). LNCS.
Keywords: Intelligent Headlights; vehicle detection
|
|
Antonio Lopez, J. Hilgenstock, A. Busse, Ramon Baldrich, Felipe Lumbreras, & Joan Serrat. (2008). Temporal Coherence Analysis for Intelligent Headlight Control.
Keywords: Intelligent Headlights
|
|
Arash Akbarinia, C. Alejandro Parraga, Marta Exposito, Bogdan Raducanu, & Xavier Otazu. (2017). Can biological solutions help computers detect symmetry? In 40th European Conference on Visual Perception.
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2012). Improving Color Constancy by Photometric Edge Weighting. TPAMI - IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(5), 918–929.
Abstract: : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2008). Edge Classification for Color Constancy. In 4th European Conference on Colour in Graphics, Imaging and Vision Proceedings (231–234).
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2009). Physics-based Edge Evaluation for Improved Color Constancy. In 22nd IEEE Conference on Computer Vision and Pattern Recognition (581 – 588).
Abstract: Edge-based color constancy makes use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as shadow, geometry, material and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation.
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2010). Generalized Gamut Mapping using Image Derivative Structures for Color Constancy. IJCV - International Journal of Computer Vision, 86(2-3), 127–139.
Abstract: The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and realworld scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2011). Computational Color Constancy: Survey and Experiments. TIP - IEEE Transactions on Image Processing, 20(9), 2475–2489.
Abstract: Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.
Keywords: computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting
|
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
|