|   | 
Details
   web
Records
Author (up) Arash Akbarinia
Title Computational Model of Visual Perception: From Colour to Form Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The original idea of this project was to study the role of colour in the challenging task of object recognition. We started by extending previous research on colour naming showing that it is feasible to capture colour terms through parsimonious ellipsoids. Although, the results of our model exceeded state-of-the-art in two benchmark datasets, we realised that the two phenomena of metameric lights and colour constancy must be addressed prior to any further colour processing. Our investigation of metameric pairs reached the conclusion that they are infrequent in real world scenarios. Contrary to that, the illumination of a scene often changes dramatically. We addressed this issue by proposing a colour constancy model inspired by the dynamical centre-surround adaptation of neurons in the visual cortex. This was implemented through two overlapping asymmetric Gaussians whose variances and heights are adjusted according to the local contrast of pixels. We complemented this model with a generic contrast-variant pooling mechanism that inversely connect the percentage of pooled signal to the local contrast of a region. The results of our experiments on four benchmark datasets were indeed promising: the proposed model, although simple, outperformed even learning-based approaches in many cases. Encouraged by the success of our contrast-variant surround modulation, we extended this approach to detect boundaries of objects. We proposed an edge detection model based on the first derivative of the Gaussian kernel. We incorporated four types of surround: full, far, iso- and orthogonal-orientation. Furthermore, we accounted for the pooling mechanism at higher cortical areas and the shape feedback sent to lower areas. Our results in three benchmark datasets showed significant improvement over non-learning algorithms.
To summarise, we demonstrated that biologically-inspired models offer promising solutions to computer vision problems, such as, colour naming, colour constancy and edge detection. We believe that the greatest contribution of this Ph.D dissertation is modelling the concept of dynamic surround modulation that shows the significance of contrast-variant surround integration. The models proposed here are grounded on only a portion of what we know about the human visual system. Therefore, it is only natural to complement them accordingly in future works.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-4-9 Medium
Area Expedition Conference
Notes NEUROBIT Approved no
Call Number Admin @ si @ Akb2017 Serial 3019
Permanent link to this record
 

 
Author (up) Ariel Amato
Title Environment-Independent Moving Cast Shadow Suppression in Video Surveillance Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This thesis is devoted to moving shadows detection and suppression. Shadows could be defined as the parts of the scene that are not directly illuminated by a light source due to obstructing object or objects. Often, moving shadows in images sequences are undesirable since they could cause degradation of the expected results during processing of images for object detection, segmentation, scene surveillance or similar purposes. In this thesis first moving shadow detection methods are exhaustively overviewed. Beside the mentioned methods from literature and to compensate their limitations a new moving shadow detection method is proposed. It requires no prior knowledge about the scene, nor is it restricted to assumptions about specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene the values of the background image are divided by values of the current frame in the RGB color space. In the thesis how this luminance ratio can be used to identify segments with low gradient constancy is shown, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of the proposed method compared with the most sophisticated state-of-the-art shadow detection algorithms. These results show that the proposed approach is robust and accurate over a broad range of shadow types and challenging video conditions.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Mikhail Mozerov;Jordi Gonzalez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Ama2012 Serial 2201
Permanent link to this record
 

 
Author (up) Armin Mehri
Title Deep learning based architectures for cross-domain image processing Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, increasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than thoseof regular digital cameras.
This thesis aims to improve beyond-visible-spectrum machine vision by integrating multi-modal spectral sensors. The emphasis is on transforming the produced images to enhance their resolution to match expected human perception, bring the color representation close to human understanding of natural color, and improve machine vision application performance. This research focuses mainly on two tasks, image Colorization and Image Super resolution for both single- and cross-domain problems. We first start with an extensive review of the state of the art in both tasks, point out the shortcomings of existing approaches, and then present our solutions to address their limitations. Our solutions demonstrate that low-cost channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images with higher quality and closer to human perception at a lower cost than a high-cost infrared camera.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-1-5 Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ Meh2023 Serial 3959
Permanent link to this record
 

 
Author (up) Arnau Baro
Title Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Alicia Fornes
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-8-6 Medium
Area Expedition Conference
Notes DAG; Approved no
Call Number Admin @ si @ Bar2022 Serial 3754
Permanent link to this record
 

 
Author (up) Aura Hernandez-Sabate
Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-937261-6-4 Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Her2009 Serial 1543
Permanent link to this record
 

 
Author (up) Aymen Azaza
Title Context, Motion and Semantic Information for Computational Saliency Type Book Whole
Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The main objective of this thesis is to highlight the salient object in an image or in a video sequence. We address three important—but in our opinion
insufficiently investigated—aspects of saliency detection. Firstly, we start
by extending previous research on saliency which explicitly models the information provided from the context. Then, we show the importance of
explicit context modelling for saliency estimation. Several important works
in saliency are based on the usage of object proposals. However, these methods
focus on the saliency of the object proposal itself and ignore the context.
To introduce context in such saliency approaches, we couple every object
proposal with its direct context. This allows us to evaluate the importance
of the immediate surround (context) for its saliency. We propose several
saliency features which are computed from the context proposals including
features based on omni-directional and horizontal context continuity. Secondly,
we investigate the usage of top-downmethods (high-level semantic
information) for the task of saliency prediction since most computational
methods are bottom-up or only include few semantic classes. We propose
to consider a wider group of object classes. These objects represent important
semantic information which we will exploit in our saliency prediction
approach. Thirdly, we develop a method to detect video saliency by computing
saliency from supervoxels and optical flow. In addition, we apply the
context features developed in this thesis for video saliency detection. The
method combines shape and motion features with our proposed context
features. To summarize, we prove that extending object proposals with their
direct context improves the task of saliency detection in both image and
video data. Also the importance of the semantic information in saliency
estimation is evaluated. Finally, we propose a newmotion feature to detect
saliency in video data. The three proposed novelties are evaluated on standard
saliency benchmark datasets and are shown to improve with respect to
state-of-the-art.
Address October 2018
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Ali Douik
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-9-4 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Aza2018 Serial 3218
Permanent link to this record
 

 
Author (up) Bhaskar Chakraborty
Title Model free approach to human action recognition Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Automatic understanding of human activity and action is very important and challenging research area of Computer Vision with wide applications in video surveillance, motion analysis, virtual reality interfaces, video indexing, content based video retrieval, HCI and health care. This thesis presents a series of techniques to solve the problem of human action recognition in video. First approach towards this goal is based on a probabilistic optimization model of body parts using Hidden Markov Model. This strong model based approach is able to distinguish between similar actions by only considering the body parts having major contributions to the actions. In next approach, we apply a weak model based human detector and actions are represented by Bag-of-key poses model to capture the human pose changes during the actions. To tackle the problem of human action recognition in complex scenes, a selective spatio-temporal interest point (STIP) detector is proposed by using a mechanism similar to that of the non-classical receptive field inhibition that is exhibited by most oriented selective neuron in the primary visual cortex. An extension of the selective STIP detector is applied to multi-view action recognition system by introducing a novel 4D STIPs (3D space + time). Finally, we use our STIP detector on large scale continuous visual event recognition problem and propose a novel generalized max-margin Hough transformation framework for activity detection
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Cha2012 Serial 2207
Permanent link to this record
 

 
Author (up) Bonifaz Stuhr
Title Towards Unsupervised Representation Learning: Learning, Evaluating and Transferring Visual Representations Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Unsupervised representation learning aims at finding methods that learn representations from data without annotation-based signals. Abstaining from annotations not only leads to economic benefits but may – and to some extent already does – result in advantages regarding the representation’s structure, robustness, and generalizability to different tasks. In the long run, unsupervised methods are expected to surpass their supervised counterparts due to the reduction of human intervention and the inherently more general setup that does not bias the optimization towards an objective originating from specific annotation-based signals. While major advantages of unsupervised representation learning have been recently observed in natural language processing, supervised methods still dominate in vision domains for most tasks. In this dissertation, we contribute to the field of unsupervised (visual) representation learning from three perspectives: (i) Learning representations: We design unsupervised, backpropagation-free Convolutional Self-Organizing Neural Networks (CSNNs) that utilize self-organization- and Hebbian-based learning rules to learn convolutional kernels and masks to achieve deeper backpropagation-free models. Thereby, we observe that backpropagation-based and -free methods can suffer from an objective function mismatch between the unsupervised pretext task and the target task. This mismatch can lead to performance decreases for the target task. (ii) Evaluating representations: We build upon the widely used (non-)linear evaluation protocol to define pretext- and target-objective-independent metrics for measuring the objective function mismatch. With these metrics, we evaluate various pretext and target tasks and disclose dependencies of the objective function mismatch concerning different parts of the training and model setup. (iii) Transferring representations: We contribute CARLANE, the first 3-way sim-to-real domain adaptation benchmark for 2D lane detection. We adopt several well-known unsupervised domain adaptation methods as baselines and propose a method based on prototypical cross-domain self-supervised learning. Finally, we focus on pixel-based unsupervised domain adaptation and contribute a content-consistent unpaired image-to-image translation method that utilizes masks, global and local discriminators, and similarity sampling to mitigate content inconsistencies, as well as feature-attentive denormalization to fuse content-based statistics into the generator stream. In addition, we propose the cKVD metric to incorporate class-specific content inconsistencies into perceptual metrics for measuring translation quality.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIA Place of Publication Editor Jordi Gonzalez;Jurgen Brauer
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-6-0 Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Stu2023 Serial 3966
Permanent link to this record
 

 
Author (up) Carles Fernandez
Title Understanding Image Sequences: the Role of Ontologies in Cognitive Vision Type Book Whole
Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The increasing ubiquitousness of digital information in our daily lives has positioned
video as a favored information vehicle, and given rise to an astonishing generation of
social media and surveillance footage. This raises a series of technological demands
for automatic video understanding and management, which together with the compromising attentional limitations of human operators, have motivated the research
community to guide its steps towards a better attainment of such capabilities. As
a result, current trends on cognitive vision promise to recognize complex events and
self-adapt to different environments, while managing and integrating several types of
knowledge. Future directions suggest to reinforce the multi-modal fusion of information sources and the communication with end-users.
In this thesis we tackle the problem of recognizing and describing meaningful
events in video sequences from different domains, and communicating the resulting
knowledge to end-users by means of advanced interfaces for human–computer interaction. This problem is addressed by designing the high-level modules of a cognitive
vision framework exploiting ontological knowledge. Ontologies allow us to define the
relevant concepts in a domain and the relationships among them; we prove that the
use of ontologies to organize, centralize, link, and reuse different types of knowledge
is a key factor in the materialization of our objectives.
The proposed framework contributes to: (i) automatically learn the characteristics
of different scenarios in a domain; (ii) reason about uncertain, incomplete, or vague
information from visual –camera’s– or linguistic –end-user’s– inputs; (iii) derive plausible interpretations of complex events from basic spatiotemporal developments; (iv)
facilitate natural interfaces that adapt to the needs of end-users, and allow them to
communicate efficiently with the system at different levels of interaction; and finally,
(v) find mechanisms to guide modeling processes, maintain and extend the resulting
models, and to exploit multimodal resources synergically to enhance the former tasks.
We describe a holistic methodology to achieve these goals. First, the use of prior
taxonomical knowledge is proved useful to guide MAP-MRF inference processes in
the automatic identification of semantic regions, with independence of a particular scenario. Towards the recognition of complex video events, we combine fuzzy
metric-temporal reasoning with SGTs, thus assessing high-level interpretations from
spatiotemporal data. Here, ontological resources like T–Boxes, onomasticons, or factual databases become useful to derive video indexing and retrieval capabilities, and
also to forward highlighted content to smart user interfaces. There, we explore the
application of ontologies to discourse analysis and cognitive linguistic principles, or scene augmentation techniques towards advanced communication by means of natural language dialogs and synthetic visualizations. Ontologies become fundamental to
coordinate, adapt, and reuse the different modules in the system.
The suitability of our ontological framework is demonstrated by a series of applications that especially benefit the field of smart video surveillance, viz. automatic generation of linguistic reports about the content of video sequences in multiple natural
languages; content-based filtering and summarization of these reports; dialogue-based
interfaces to query and browse video contents; automatic learning of semantic regions
in a scenario; and tools to evaluate the performance of components and models in the
system, via simulation and augmented reality.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-937261-2-6 Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ Fer2010a Serial 1333
Permanent link to this record
 

 
Author (up) Carles Sanchez
Title Tracheal Structure Characterization using Geometric and Appearance Models for Efficient Assessment of Stenosis in Videobronchoscopy Type Book Whole
Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recent advances in endoscopic devices have increased their use for minimal invasive diagnostic and intervention procedures. Among all endoscopic modalities, bronchoscopy is one of the most frequent with around 261 millions of procedures per year. Although the use of bronchoscopy is spread among clinical facilities it presents some drawbacks, being the visual inspection for the assessment of anatomical measurements the most prevalent of them. In
particular, inaccuracies in the estimation of the degree of stenosis (the percentage of obstructed airway) decreases its diagnostic yield and might lead to erroneous treatments. An objective computation of tracheal stenosis in bronchoscopy videos would constitute a breakthrough for this non-invasive technique and a reduction in treatment cost.
This thesis settles the first steps towards on-line reliable extraction of anatomical information from videobronchoscopy for computation of objective measures. In particular, we focus on the computation of the degree of stenosis, which is obtained by comparing the area delimited by a healthy tracheal ring and the stenosed lumen. Reliable extraction of airway structures in interventional videobronchoscopy is a challenging task. This is mainly due to the large variety of acquisition conditions (positions and illumination), devices (different digitalizations) and in videos acquired at the operating room the unpredicted presence of surgical devices (such as probe ends). This thesis contributes to on-line stenosis assessment in several ways. We
propose a parametric strategy for the extraction of lumen and tracheal rings regions based on the characterization of their geometry and appearance that guide a deformable model. The geometric and appearance characterization is based on a physical model describing the way bronchoscopy images are obtained and includes local and global descriptions. In order to ensure a systematic applicability we present a statistical framework to select the optimal
parameters of our method. Experiments perform on the first public annotated database, show that the performance of our method is comparable to the one provided by clinicians and its computation time allows for a on-line implementation in the operating room.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor F. Javier Sanchez;Debora Gil;Jorge Bernal
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940902-9-5 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ San2014 Serial 2575
Permanent link to this record
 

 
Author (up) Carola Figueroa Flores
Title Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification
Abstract For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
Address March 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-4-7 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Fig2021 Serial 3600
Permanent link to this record
 

 
Author (up) Cesar de Souza
Title Action Recognition in Videos: Data-efficient approaches for supervised learning of human action classification models for video Type Book Whole
Year 2018 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this dissertation, we explore different ways to perform human action recognition in video clips. We focus on data efficiency, proposing new approaches that alleviate the need for laborious and time-consuming manual data annotation. In the first part of this dissertation, we start by analyzing previous state-of-the-art models, comparing their differences and similarities in order to pinpoint where their real strengths come from. Leveraging this information, we then proceed to boost the classification accuracy of shallow models to levels that rival deep neural networks. We introduce hybrid video classification architectures based on carefully designed unsupervised representations of handcrafted spatiotemporal features classified by supervised deep networks. We show in our experiments that our hybrid model combine the best of both worlds: it is data efficient (trained on 150 to 10,000 short clips) and yet improved significantly on the state of the art, including deep models trained on millions of manually labeled images and videos. In the second part of this research, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. It contains a total of 39,982 videos, with more than 1,000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We then introduce deep multi-task representation learning architectures to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
Address April 2018
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Naila Murray
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Sou2018 Serial 3127
Permanent link to this record
 

 
Author (up) Chenshen Wu
Title Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep learning has made tremendous progress in the last decade due to the explosion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change over time. Continuous learning takes this situation into account, where the learner must adapt to a sequence of tasks, each with a different distribution. If you would naively continue training the model with a new task, the performance of the model would drop dramatically for the previously learned data. This phenomenon is known as catastrophic forgetting.
Many approaches have been proposed to address this problem, which can be divided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the existing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.
For the image generation problem, since the model can generate images from the previously learned task, it is free to apply rehearsal without any limitation. We developed two methods based on generative replay. The first one uses the generated image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.
Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective because continual learning of reID can benefit a lot from the generalization of metalearning. We also propose a distillation loss and found that the removal of the positive pairs before the distillation loss is critical.
Finally, we study continual learning for the counting problem. We study the mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual learning of object counting. To further improve results, we propose an adaptor to adapt the changing feature extractor for the fixed counter head. Extensive evaluation shows that this results in improved continual learning performance.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-0-8 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Wu2023 Serial 3960
Permanent link to this record
 

 
Author (up) Cristhian Aguilera
Title Local feature description in cross-spectral imagery Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-6-3 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Agu2017 Serial 3020
Permanent link to this record
 

 
Author (up) Daniel Ponsa
Title Model-Based Visual Localisation of Contours and Vehicles Type Book Whole
Year 2007 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords Phd Thesis
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-935251-3-2 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ Pon2007 Serial 1107
Permanent link to this record