Hugo Berti, Angel Sappa, & Osvaldo Agamennoni. (2008). Improved Dynamic Window Approach by Using Lyapunov Stability Criteria. Latin American Applied Research, 289–298.
|
Hugo Bertiche, Meysam Madadi, Emilio Tylson, & Sergio Escalera. (2021). DeePSD: Automatic Deep Skinning And Pose Space Deformation For 3D Garment Animation. In 19th IEEE International Conference on Computer Vision (pp. 5471–5480).
Abstract: We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.
|
Hugo Bertiche, Meysam Madadi, & Sergio Escalera. (2020). CLOTH3D: Clothed 3D Humans. In 16th European Conference on Computer Vision.
Abstract: This work presents CLOTH3D, the first big scale synthetic dataset of 3D clothed human sequences. CLOTH3D contains a large variability on garment type, topology, shape, size, tightness and fabric. Clothes are simulated on top of thousands of different pose sequences and body shapes, generating realistic cloth dynamics. We provide the dataset with a generative model for cloth generation. We propose a Conditional Variational Auto-Encoder (CVAE) based on graph convolutions (GCVAE) to learn garment latent spaces. This allows for realistic generation of 3D garments on top of SMPL model for any pose and shape.
|
Hugo Bertiche, Meysam Madadi, & Sergio Escalera. (2021). Deep Parametric Surfaces for 3D Outfit Reconstruction from Single View Image. In 16th IEEE International Conference on Automatic Face and Gesture Recognition (pp. 1–8).
Abstract: We present a methodology to retrieve analytical surfaces parametrized as a neural network. Previous works on 3D reconstruction yield point clouds, voxelized objects or meshes. Instead, our approach yields 2-manifolds in the euclidean space through deep learning. To this end, we implement a novel formulation for fully connected layers as parametrized manifolds that allows continuous predictions with differential geometry. Based on this property we propose a novel smoothness loss. Results on CLOTH3D++ dataset show the possibility to infer different topologies and the benefits of the smoothness term based on differential geometry.
|
Hugo Bertiche, Meysam Madadi, & Sergio Escalera. (2021). PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation. In 14th ACM Siggraph Conference and exhibition on Computer Graphics and Interactive Techniques in Asia.
Abstract: We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
|
Hugo Bertiche, Meysam Madadi, & Sergio Escalera. (2021). PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation. ACM Transactions on Graphics, 40(6), 1–14.
Abstract: We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
|
Hugo Bertiche, Meysam Madadi, & Sergio Escalera. (2022). Neural Cloth Simulation. ACMTGraph - ACM Transactions on Graphics, 41(6), 1–14.
Abstract: We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.
ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
|
Hugo Bertiche, Niloy J Mitra, Kuldeep Kulkarni, Chun Hao Paul Huang, Tuanfeng Y Wang, Meysam Madadi, et al. (2023). Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images. In 36th IEEE Conference on Computer Vision and Pattern Recognition (pp. 459–468).
Abstract: Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.
|
Hugo Jair Escalante, Heysem Kaya, Albert Ali Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guçlu, et al. (2022). Modeling, Recognizing, and Explaining Apparent Personality from Videos. TAC - IEEE Transactions on Affective Computing, 13(2), 894–911.
Abstract: Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.
|
Hugo Jair Escalante, Heysem Kaya, Albert Ali Salah, Sergio Escalera, Yagmur Gucluturk, Umut Guclu, et al. (2018). Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos.
Abstract: Explainability and interpretability are two critical aspects of decision support systems. Within computer vision, they are critical in certain tasks related to human behavior analysis such as in health care applications. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of computer vision with an emphasis on looking at people tasks. Specifically, we review and study those mechanisms in the context of first impressions analysis. To the best of our knowledge, this is the first effort in this direction. Additionally, we describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, the evaluation protocol, and summarize the results of the challenge. Finally, derived from our study, we outline research opportunities that we foresee will be decisive in the near future for the development of the explainable computer vision field.
|
Hugo Jair Escalante, Isabelle Guyon, Sergio Escalera, Julio C. S. Jacques Junior, Xavier Baro, Evelyne Viegas, et al. (2017). Design of an Explainable Machine Learning Challenge for Video Interviews. In International Joint Conference on Neural Networks.
Abstract: This paper reviews and discusses research advances on “explainable machine learning” in computer vision. We focus on a particular area of the “Looking at People” (LAP) thematic domain: first impressions and personality analysis. Our aim is to make the computational intelligence and computer vision communities aware of the importance of developing explanatory mechanisms for computer-assisted decision making applications, such as automating recruitment. Judgments based on personality traits are being made routinely by human resource departments to evaluate the candidates' capacity of social insertion and their potential of career growth. However, inferring personality traits and, in general, the process by which we humans form a first impression of people, is highly subjective and may be biased. Previous studies have demonstrated that learning machines can learn to mimic human decisions. In this paper, we go one step further and formulate the problem of explaining the decisions of the models as a means of identifying what visual aspects are important, understanding how they relate to decisions suggested, and possibly gaining insight into undesirable negative biases. We design a new challenge on explainability of learning machines for first impressions analysis. We describe the setting, scenario, evaluation metrics and preliminary outcomes of the competition. To the best of our knowledge this is the first effort in terms of challenges for explainability in computer vision. In addition our challenge design comprises several other quantitative and qualitative elements of novelty, including a “coopetition” setting, which combines competition and collaboration.
|
Hugo Jair Escalante, Jose Martinez, Sergio Escalera, Victor Ponce, & Xavier Baro. (2015). Improving Bag of Visual Words Representations with Genetic Programming. In IEEE International Joint Conference on Neural Networks IJCNN2015.
Abstract: The bag of visual words is a well established representation in diverse computer vision problems. Taking inspiration from the fields of text mining and retrieval, this representation has proved to be very effective in a large number of domains.
In most cases, a standard term-frequency weighting scheme is considered for representing images and videos in computer vision. This is somewhat surprising, as there are many alternative ways of generating bag of words representations within the text processing community. This paper explores the use of alternative weighting schemes for landmark tasks in computer vision: image
categorization and gesture recognition. We study the suitability of using well-known supervised and unsupervised weighting schemes for such tasks. More importantly, we devise a genetic program that learns new ways of representing images and videos under the bag of visual words representation. The proposed method learns to combine term-weighting primitives trying to maximize the classification performance. Experimental results are reported in standard image and video data sets showing the effectiveness of the proposed evolutionary algorithm.
|
Hugo Jair Escalante, Sergio Escalera, Isabelle Guyon, Xavier Baro, Yagmur Gucluturk, Umut Guçlu, et al. (2018). Explainable and Interpretable Models in Computer Vision and Machine Learning.
Abstract: This book compiles leading research on the development of explainable and interpretable machine learning methods in the context of computer vision and machine learning.
Research progress in computer vision and pattern recognition has led to a variety of modeling techniques with almost human-like performance. Although these models have obtained astounding results, they are limited in their explainability and interpretability: what is the rationale behind the decision made? what in the model structure explains its functioning? Hence, while good performance is a critical required characteristic for learning machines, explainability and interpretability capabilities are needed to take learning machines to the next step to include them in decision support systems involving human supervision.
This book, written by leading international researchers, addresses key topics of explainability and interpretability, including the following:
·Evaluation and Generalization in Interpretable Machine Learning
·Explanation Methods in Deep Learning
·Learning Functional Causal Models with Generative Neural Networks
·Learning Interpreatable Rules for Multi-Label Classification
·Structuring Neural Networks for More Explainable Predictions
·Generating Post Hoc Rationales of Deep Visual Classification Decisions
·Ensembling Visual Explanations
·Explainable Deep Driving by Visualizing Causal Attention
·Interdisciplinary Perspective on Algorithmic Job Candidate Search
·Multimodal Personality Trait Analysis for Explainable Modeling of Job Interview Decisions
·Inherent Explainability Pattern Theory-based Video Event Interpretations
|
Hugo Jair Escalante, Victor Ponce, Jun Wan, Michael A. Riegler, Baiyu Chen, Albert Clapes, et al. (2016). ChaLearn Joint Contest on Multimedia Challenges Beyond Visual Analysis: An Overview. In 23rd International Conference on Pattern Recognition.
Abstract: This paper provides an overview of the Joint Contest on Multimedia Challenges Beyond Visual Analysis. We organized an academic competition that focused on four problems that require effective processing of multimodal information in order to be solved. Two tracks were devoted to gesture spotting and recognition from RGB-D video, two fundamental problems for human computer interaction. Another track was devoted to a second round of the first impressions challenge of which the goal was to develop methods to recognize personality traits from
short video clips. For this second round we adopted a novel collaborative-competitive (i.e., coopetition) setting. The fourth track was dedicated to the problem of video recommendation for improving user experience. The challenge was open for about 45 days, and received outstanding participation: almost
200 participants registered to the contest, and 20 teams sent predictions in the final stage. The main goals of the challenge were fulfilled: the state of the art was advanced considerably in the four tracks, with novel solutions to the proposed problems (mostly relying on deep learning). However, further research is still required. The data of the four tracks will be available to
allow researchers to keep making progress in the four tracks.
|
Hugo Jair Escalante, Victor Ponce, Sergio Escalera, Xavier Baro, Alicia Morales-Reyes, & Jose Martinez-Carranza. (2017). Evolving weighting schemes for the Bag of Visual Words. Neural Computing and Applications - Neural Computing and Applications, 28(5), 925–939.
Abstract: The Bag of Visual Words (BoVW) is an established representation in computer vision. Taking inspiration from text mining, this representation has proved
to be very effective in many domains. However, in most cases, standard term-weighting schemes are adopted (e.g.,term-frequency or TF-IDF). It remains open the question of whether alternative weighting schemes could boost the
performance of methods based on BoVW. More importantly, it is unknown whether it is possible to automatically learn and determine effective weighting schemes from
scratch. This paper brings some light into both of these unknowns. On the one hand, we report an evaluation of the most common weighting schemes used in text mining, but rarely used in computer vision tasks. Besides, we propose an evolutionary algorithm capable of automatically learning weighting schemes for computer vision problems. We report empirical results of an extensive study in several computer vision problems. Results show the usefulness of the proposed method.
Keywords: Bag of Visual Words; Bag of features; Genetic programming; Term-weighting schemes; Computer vision
|