|   | 
Details
   web
Records
Author (down) Arnau Baro; Pau Riba; Alicia Fornes
Title A Starting Point for Handwritten Music Recognition Type Conference Article
Year 2018 Publication 1st International Workshop on Reading Music Systems Abbreviated Journal
Volume Issue Pages 5-6
Keywords Optical Music Recognition; Long Short-Term Memory; Convolutional Neural Networks; MUSCIMA++; CVCMUSCIMA
Abstract In the last years, the interest in Optical Music Recognition (OMR) has reawakened, especially since the appearance of deep learning. However, there are very few works addressing handwritten scores. In this work we describe a full OMR pipeline for handwritten music scores by using Convolutional and Recurrent Neural Networks that could serve as a baseline for the research community.
Address Paris; France; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WORMS
Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no
Call Number Admin @ si @ BRF2018 Serial 3223
Permanent link to this record
 

 
Author (down) Arka Ujjal Dey; Suman Ghosh; Ernest Valveny
Title Don't only Feel Read: Using Scene text to understand advertisements Type Conference Article
Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.
Address Salt Lake City; Utah; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ DGV2018 Serial 3551
Permanent link to this record
 

 
Author (down) Arash Akbarinia; C. Alejandro Parraga
Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 40 Issue 9 Pages 2081 - 2094
Keywords
Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.068; 600.072 Approved no
Call Number Admin @ si @ AkP2018a Serial 2990
Permanent link to this record
 

 
Author (down) Arash Akbarinia; C. Alejandro Parraga
Title Feedback and Surround Modulated Boundary Detection Type Journal Article
Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 126 Issue 12 Pages 1367–1380
Keywords Boundary detection; Surround modulation; Biologically-inspired vision
Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.068; 600.072 Approved no
Call Number Admin @ si @ AkP2018b Serial 2991
Permanent link to this record
 

 
Author (down) Antonio Lopez; David Vazquez; Gabriel Villalonga
Title Data for Training Models, Domain Adaptation Type Book Chapter
Year 2018 Publication Intelligent Vehicles. Enabling Technologies and Future Developments Abbreviated Journal
Volume Issue Pages 395–436
Keywords Driving simulator; hardware; software; interface; traffic simulation; macroscopic simulation; microscopic simulation; virtual data; training data
Abstract Simulation can enable several developments in the field of intelligent vehicles. This chapter is divided into three main subsections. The first one deals with driving simulators. The continuous improvement of hardware performance is a well-known fact that is allowing the development of more complex driving simulators. The immersion in the simulation scene is increased by high fidelity feedback to the driver. In the second subsection, traffic simulation is explained as well as how it can be used for intelligent transport systems. Finally, it is rather clear that sensor-based perception and action must be based on data-driven algorithms. Simulation could provide data to train and test algorithms that are afterwards implemented in vehicles. These tools are explained in the third subsection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ LVV2018 Serial 3047
Permanent link to this record
 

 
Author (down) Antonio Lopez
Title Pedestrian Detection Systems Type Book Chapter
Year 2018 Publication Wiley Encyclopedia of Electrical and Electronics Engineering Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pedestrian detection is a highly relevant topic for both advanced driver assistance systems (ADAS) and autonomous driving. In this entry, we review the ideas behind pedestrian detection systems from the point of view of perception based on computer vision and machine learning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Lop2018 Serial 3230
Permanent link to this record
 

 
Author (down) Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal
Title Product graph-based higher order contextual similarities for inexact subgraph matching Type Journal Article
Year 2018 Publication Pattern Recognition Abbreviated Journal PR
Volume 76 Issue Pages 596-611
Keywords
Abstract Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 602.167; 600.097; 600.121 Approved no
Call Number Admin @ si @ DLB2018 Serial 3083
Permanent link to this record
 

 
Author (down) Anjan Dutta; Hichem Sahbi
Title Stochastic Graphlet Embedding Type Journal Article
Year 2018 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS
Volume Issue Pages 1-14
Keywords Stochastic graphlets; Graph embedding; Graph classification; Graph hashing; Betweenness centrality
Abstract Graph-based methods are known to be successful in many machine learning and pattern classification tasks. These methods consider semi-structured data as graphs where nodes correspond to primitives (parts, interest points, segments,
etc.) and edges characterize the relationships between these primitives. However, these non-vectorial graph data cannot be straightforwardly plugged into off-the-shelf machine learning algorithms without a preliminary step of – explicit/implicit –graph vectorization and embedding. This embedding process
should be resilient to intra-class graph variations while being highly discriminant. In this paper, we propose a novel high-order stochastic graphlet embedding (SGE) that maps graphs into vector spaces. Our main contribution includes a new stochastic search procedure that efficiently parses a given graph and extracts/samples unlimitedly high-order graphlets. We consider
these graphlets, with increasing orders, to model local primitives as well as their increasingly complex interactions. In order to build our graph representation, we measure the distribution of these graphlets into a given graph, using particular hash functions that efficiently assign sampled graphlets into isomorphic sets with a very low probability of collision. When
combined with maximum margin classifiers, these graphlet-based representations have positive impact on the performance of pattern comparison and recognition as corroborated through extensive experiments using standard benchmark databases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 602.167; 602.168; 600.097; 600.121 Approved no
Call Number Admin @ si @ DuS2018 Serial 3225
Permanent link to this record
 

 
Author (down) Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas
Title Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal
Volume 11455 Issue Pages 71-82
Keywords
Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ NDC2018 Serial 3178
Permanent link to this record
 

 
Author (down) Ana Maria Ares; Jorge Bernal; Maria Jesus Nozal; F. Javier Sanchez; Jose Bernal
Title Results of the use of Kahoot! gamification tool in a course of Chemistry Type Conference Article
Year 2018 Publication 4th International Conference on Higher Education Advances Abbreviated Journal
Volume Issue Pages 1215-1222
Keywords
Abstract The present study examines the use of Kahoot! as a gamification tool to explore mixed learning strategies. We analyze its use in two different groups of a theoretical subject of the third course of the Degree in Chemistry. An empirical-analytical methodology was used using Kahoot! in two different groups of students, with different frequencies. The academic results of these two group of students were compared between them and with those obtained in the previous course, in which Kahoot! was not employed, with the aim of measuring the evolution in the students´ knowledge. The results showed, in all cases, that the use of Kahoot! has led to a significant increase in the overall marks, and in the number of students who passed the subject. Moreover, some differences were also observed in students´ academic performance according to the group. Finally, it can be concluded that the use of a gamification tool (Kahoot!) in a university classroom had generally improved students´ learning and marks, and that this improvement is more prevalent in those students who have achieved a better Kahoot! performance.
Address Valencia; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference HEAD
Notes MV; no proj Approved no
Call Number Admin @ si @ ABN2018 Serial 3246
Permanent link to this record
 

 
Author (down) Alicia Fornes; Bart Lamiroy
Title Graphics Recognition, Current Trends and Evolutions Type Book Whole
Year 2018 Publication Graphics Recognition, Current Trends and Evolutions Abbreviated Journal
Volume 11009 Issue Pages
Keywords
Abstract This book constitutes the thoroughly refereed post-conference proceedings of the 12th International Workshop on Graphics Recognition, GREC 2017, held in Kyoto, Japan, in November 2017.
The 10 revised full papers presented were carefully reviewed and selected from 14 initial submissions. They contain both classical and emerging topics of graphics rcognition, namely analysis and detection of diagrams, search and classification, optical music recognition, interpretation of engineering drawings and maps.
Address
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-030-02283-9 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ FoL2018 Serial 3171
Permanent link to this record
 

 
Author (down) Alejandro Cartas; Juan Marin; Petia Radeva; Mariella Dimiccoli
Title Batch-based activity recognition from egocentric photo-streams revisited Type Journal Article
Year 2018 Publication Pattern Analysis and Applications Abbreviated Journal PAA
Volume 21 Issue 4 Pages 953–965
Keywords Egocentric vision; Lifelogging; Activity recognition; Deep learning; Recurrent neural networks
Abstract Wearable cameras can gather large amounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a late fusion ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high-level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85%, outperforming state-of-the-art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ CMR2018 Serial 3186
Permanent link to this record
 

 
Author (down) Alejandro Cartas; Estefania Talavera; Petia Radeva; Mariella Dimiccoli
Title On the Role of Event Boundaries in Egocentric Activity Recognition from Photostreams Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Event boundaries play a crucial role as a pre-processing step for detection, localization, and recognition tasks of human activities in videos. Typically, although their intrinsic subjectiveness, temporal bounds are provided manually as input for training action recognition algorithms. However, their role for activity recognition in the domain of egocentric photostreams has been so far neglected. In this paper, we provide insights of how automatically computed boundaries can impact activity recognition results in the emerging domain of egocentric photostreams. Furthermore, we collected a new annotated dataset acquired by 15 people by a wearable photo-camera and we used it to show the generalization capabilities of several deep learning based architectures to unseen users.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ CTR2018 Serial 3184
Permanent link to this record
 

 
Author (down) Albert Clapes; Ozan Bilici; Dariia Temirova; Egils Avots; Gholamreza Anbarjafari; Sergio Escalera
Title From apparent to real age: gender, age, ethnic, makeup, and expression bias analysis in real age estimation Type Conference Article
Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 2373-2382
Keywords
Abstract
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes HUPBA Approved no
Call Number Admin @ si @ Serial 3116
Permanent link to this record
 

 
Author (down) Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera
Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 29 Issue 5 Pages 765–788
Keywords Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology
Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ CPP2018 Serial 3125
Permanent link to this record