|   | 
Details
   web
Records
Author (up) Florin Popescu; Stephane Ayache; Sergio Escalera; Xavier Baro; Cecile Capponi; Patrick Panciatici; Isabelle Guyon
Title From geospatial observations of ocean currents to causal predictors of spatio-economic activity using computer vision and machine learning Type Conference Article
Year 2016 Publication European Geosciences Union General Assembly Abbreviated Journal
Volume 18 Issue Pages
Keywords
Abstract The big data transformation currently revolutionizing science and industry forges novel possibilities in multimodal analysis scarcely imaginable only a decade ago. One of the important economic and industrial problems that stand to benefit from the recent expansion of data availability and computational prowess is the prediction of electricity demand and renewable energy generation. Both are correlates of human activity: spatiotemporal energy consumption patterns in society are a factor of both demand (weather dependent) and supply, which determine cost – a relation expected to strengthen along with increasing renewable energy dependence. One of the main drivers of European weather patterns is the activity of the Atlantic Ocean and in particular its dominant Northern Hemisphere current: the Gulf Stream. We choose this particular current as a test case in part due to larger amount of relevant data and scientific literature available for refinement of analysis techniques.
This data richness is due not only to its economic importance but also to its size being clearly visible in radar and infrared satellite imagery, which makes it easier to detect using Computer Vision (CV). The power of CV techniques makes basic analysis thus developed scalable to other smaller and less known, but still influential, currents, which are not just curves on a map, but complex, evolving, moving branching trees in 3D projected onto a 2D image.
We investigate means of extracting, from several image modalities (including recently available Copernicus radar and earlier Infrared satellites), a parameterized presentation of the state of the Gulf Stream and its environment that is useful as feature space representation in a machine learning context, in this case with the EC’s H2020-sponsored ‘See.4C’ project, in the context of which data scientists may find novel predictors of spatiotemporal energy flow. Although automated extractors of Gulf Stream position exist, they differ in methodology and result. We shall attempt to extract more complex feature representation including branching points, eddies and parameterized changes in transport and velocity. Other related predictive features will be similarly developed, such as inference of deep water flux long the current path and wider spatial scale features such as Hough transform, surface turbulence indicators and temperature gradient indexes along with multi-time scale analysis of ocean height and temperature dynamics. The geospatial imaging and ML community may therefore benefit from a baseline of open-source techniques useful and expandable to other related prediction and/or scientific analysis tasks.
Address Vienna; Austria; April 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference EGU
Notes HuPBA;MV; Approved no
Call Number Admin @ si @ PAE2016 Serial 2772
Permanent link to this record
 

 
Author (up) Francesco Ciompi; Simone Balocco; Juan Rigla; Xavier Carrillo; J. Mauri; Petia Radeva
Title Computer-Aided Detection of Intra-Coronary Stent in Intravascular Ultrasound Sequences Type Journal Article
Year 2016 Publication Medical Physics Abbreviated Journal MP
Volume 43 Issue 10 Pages
Keywords
Abstract Purpose: An intraluminal coronary stent is a metal mesh tube deployed in a stenotic artery during Percutaneous Coronary Intervention (PCI), in order to prevent acute vessel occlusion. The identication of struts location and the denition of the stent shape are relevant for PCI planning 15 and for patient follow-up. We present a fully-automatic framework for Computer-Aided Detection
(CAD) of intra-coronary stents in Intravascular Ultrasound (IVUS) image sequences. The CAD system is able to detect stent struts and estimate the stent shape.

Methods: The proposed CAD uses machine learning to provide a comprehensive interpretation of the local structure of the vessel by means of semantic classication. The output of the classication 20 stage is then used to detect struts and to estimate the stent shape. The proposed approach is validated using a multi-centric data-set of 1,015 images from 107 IVUS sequences containing both metallic and bio-absorbable stents.

Results: The method was able to detect structs in both metallic stents with an overall F-measure of 77.7% and a mean distance of 0.15 mm from manually annotated struts, and in bio-absorbable 25 stents with an overall F-measure of 77.4% and a mean distance of 0.09 mm from manually annotated struts.

Conclusions: The results are close to the inter-observer variability and suggest that the system has the potential of being used as method for aiding percutaneous interventions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ CBR2016 Serial 2819
Permanent link to this record
 

 
Author (up) Francisco Cruz
Title Probabilistic Graphical Models for Document Analysis Type Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Latest advances in digitization techniques have fostered the interest in creating digital copies of collections of documents. Digitized documents permit an easy maintenance, loss-less storage, and efficient ways for transmission and to perform information retrieval processes. This situation has opened a new market niche to develop systems able to automatically extract and analyze information contained in these collections, specially in the ambit of the business activity.

Due to the great variety of types of documents this is not a trivial task. For instance, the automatic extraction of numerical data from invoices differs substantially from a task of text recognition in historical documents. However, in order to extract the information of interest, is always necessary to identify the area of the document where it is located. In the area of Document Analysis we refer to this process as layout analysis, which aims at identifying and categorizing the different entities that compose the document, such as text regions, pictures, text lines, or tables, among others. To perform this task it is usually necessary to incorporate a prior knowledge about the task into the analysis process, which can be modeled by defining a set of contextual relations between the different entities of the document. The use of context has proven to be useful to reinforce the recognition process and improve the results on many computer vision tasks. It presents two fundamental questions: What kind of contextual information is appropriate for a given task, and how to incorporate this information into the models.

In this thesis we study several ways to incorporate contextual information to the task of document layout analysis, and to the particular case of handwritten text line segmentation. We focus on the study of Probabilistic Graphical Models and other mechanisms for this purpose, and propose several solutions to these problems. First, we present a method for layout analysis based on Conditional Random Fields. With this model we encode local contextual relations between variables, such as pair-wise constraints. Besides, we encode a set of structural relations between different classes of regions at feature level. Second, we present a method based on 2D-Probabilistic Context-free Grammars to encode structural and hierarchical relations. We perform a comparative study between Probabilistic Graphical Models and this syntactic approach. Third, we propose a method for structured documents based on Bayesian Networks to represent the document structure, and an algorithm based in the Expectation-Maximization to find the best configuration of the page. We perform a thorough evaluation of the proposed methods on two particular collections of documents: a historical collection composed of ancient structured documents, and a collection of contemporary documents. In addition, we present a general method for the task of handwritten text line segmentation. We define a probabilistic framework where we combine the EM algorithm with variational approaches for computing inference and parameter learning on a Markov Random Field. We evaluate our method on several collections of documents, including a general dataset of annotated administrative documents. Results demonstrate the applicability of our method to real problems, and the contribution of the use of contextual information to this kind of problems.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Oriol Ramos Terrades
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-2-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Cru2016 Serial 2861
Permanent link to this record
 

 
Author (up) G. de Oliveira; A. Cartas; Marc Bolaños; Mariella Dimiccoli; Xavier Giro; Petia Radeva
Title LEMoRe: A Lifelog Engine for Moments Retrieval at the NTCIR-Lifelog LSAT Task Type Conference Article
Year 2016 Publication 12th NTCIR Conference on Evaluation of Information Access Technologies Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Semantic image retrieval from large amounts of egocentric visual data requires to leverage powerful techniques for filling in the semantic gap. This paper introduces LEMoRe, a Lifelog Engine for Moments Retrieval, developed in the context of the Lifelog Semantic Access Task (LSAT) of the the NTCIR-12 challenge and discusses its performance variation on different trials. LEMoRe integrates classical image descriptors with high-level semantic concepts extracted by Convolutional Neural Networks (CNN), powered by a graphic user interface that uses natural language processing. Although this is just a first attempt towards interactive image retrieval from large egocentric datasets and there is a large room for improvement of the system components and the user interface, the structure of the system itself and the way the single components cooperate are very promising.
Address Tokyo; Japan; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NTCIR
Notes MILAB; Approved no
Call Number Admin @ si @OCB2016 Serial 2789
Permanent link to this record
 

 
Author (up) G. de Oliveira; Mariella Dimiccoli; Petia Radeva
Title Egocentric Image Retrieval With Deep Convolutional Neural Networks Type Conference Article
Year 2016 Publication 19th International Conference of the Catalan Association for Artificial Intelligence Abbreviated Journal
Volume Issue Pages 71-76
Keywords
Abstract
Address Barcelona; Spain; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes MILAB Approved no
Call Number Admin @ si @ODR2016 Serial 2790
Permanent link to this record
 

 
Author (up) Gerard Canal; Sergio Escalera; Cecilio Angulo
Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 149 Issue Pages 65-77
Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation
Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ CEA2016 Serial 2768
Permanent link to this record
 

 
Author (up) German Ros
Title Visual Scene Understanding for Autonomous Vehicles: Understanding Where and What Type Book Whole
Year 2016 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Making Ground Autonomous Vehicles (GAVs) a reality as a service for the society is one of the major scientific and technological challenges of this century. The potential benefits of autonomous vehicles include reducing accidents, improving traffic congestion and better usage of road infrastructures, among others. These vehicles must operate in our cities, towns and highways, dealing with many different types of situations while respecting traffic rules and protecting human lives. GAVs are expected to deal with all types of scenarios and situations, coping with an uncertain and chaotic world.
Therefore, in order to fulfill these demanding requirements GAVs need to be endowed with the capability of understanding their surrounding at many different levels, by means of affordable sensors and artificial intelligence. This capacity to understand the surroundings and the current situation that the vehicle is involved in is called scene understanding. In this work we investigate novel techniques to bring scene understanding to autonomous vehicles by combining the use of cameras as the main source of information—due to their versatility and affordability—and algorithms based on computer vision and machine learning. We investigate different degrees of understanding of the scene, starting from basic geometric knowledge about where is the vehicle within the scene. A robust and efficient estimation of the vehicle location and pose with respect to a map is one of the most fundamental steps towards autonomous driving. We study this problem from the point of view of robustness and computational efficiency, proposing key insights to improve current solutions. Then we advance to higher levels of abstraction to discover what is in the scene, by recognizing and parsing all the elements present on a driving scene, such as roads, sidewalks, pedestrians, etc. We investigate this problem known as semantic segmentation, proposing new approaches to improve recognition accuracy and computational efficiency. We cover these points by focusing on key aspects such as: (i) how to leverage computation moving semantics to an offline process, (ii) how to train compact architectures based on deconvolutional networks to achieve their maximum potential, (iii) how to use virtual worlds in combination with domain adaptation to produce accurate models in a cost-effective fashion, and (iv) how to use transfer learning techniques to prepare models to new situations. We finally extend the previous level of knowledge enabling systems to reasoning about what has change in a scene with respect to a previous visit, which in return allows for efficient and cost-effective map updating.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa;Julio Guerrero;Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-1-8 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Ros2016 Serial 2860
Permanent link to this record
 

 
Author (up) German Ros; Laura Sellart; Joanna Materzynska; David Vazquez; Antonio Lopez
Title The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes Type Conference Article
Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 3234-3243
Keywords Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Address Las Vegas; USA; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ RSM2016 Serial 2739
Permanent link to this record
 

 
Author (up) Gloria Fernandez Esparrach; Jorge Bernal; Cristina Rodriguez de Miguel; Debora Gil; Fernando Vilariño; Henry Cordova; Cristina Sanchez Montes; Isis Ara
Title Utilidad de la visión por computador para la localización de pólipos pequeños y planos Type Conference Article
Year 2016 Publication XIX Reunión Nacional de la Asociación Española de Gastroenterología, Gastroenterology Hepatology Abbreviated Journal
Volume 39 Issue 2 Pages 94
Keywords
Abstract
Address Madrid (Spain)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference AEGASTRO
Notes MV; IAM; 600.097;SIAI Approved no
Call Number Admin @ si @FBR2016 Serial 2779
Permanent link to this record
 

 
Author (up) Gloria Fernandez Esparrach; Jorge Bernal; Maria Lopez Ceron; Henry Cordova; Cristina Sanchez Montes; Cristina Rodriguez de Miguel; F. Javier Sanchez
Title Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps Type Journal Article
Year 2016 Publication Endoscopy Abbreviated Journal END
Volume 48 Issue 9 Pages 837-842
Keywords
Abstract Background and aims: Polyp miss-rate is a drawback of colonoscopy that increases significantly in small polyps. We explored the efficacy of an automatic computer vision method for polyp detection.
Methods: Our method relies on a model that defines polyp boundaries as valleys of image intensity. Valley information is integrated into energy maps which represent the likelihood of polyp presence.
Results: In 24 videos containing polyps from routine colonoscopies, all polyps were detected in at least one frame. Mean values of the maximum of energy map were higher in frames with polyps than without (p<0.001). Performance improved in high quality frames (AUC= 0.79, 95%CI: 0.70-0.87 vs 0.75, 95%CI: 0.66-0.83). Using 3.75 as maximum threshold value, sensitivity and specificity for detection of polyps were 70.4% (95%CI: 60.3-80.8) and 72.4% (95%CI: 61.6-84.6), respectively.
Conclusion: Energy maps showed a good performance for colonic polyp detection. This indicates a potential applicability in clinical practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; Approved no
Call Number Admin @ si @FBL2016 Serial 2778
Permanent link to this record
 

 
Author (up) Guim Perarnau; Joost Van de Weijer; Bogdan Raducanu; Jose Manuel Alvarez
Title Invertible conditional gans for image editing Type Conference Article
Year 2016 Publication 30th Annual Conference on Neural Information Processing Systems Worshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Generative Adversarial Networks (GANs) have recently demonstrated to successfully approximate complex data distributions. A relevant extension of this model is conditional GANs (cGANs), where the introduction of external information allows to determine specific representations of the generated images. In this work, we evaluate encoders to inverse the mapping of a cGAN, i.e., mapping a real image into a latent space and a conditional representation. This allows, for example, to reconstruct and modify real images of faces conditioning on arbitrary attributes.
Additionally, we evaluate the design of cGANs. The combination of an encoder
with a cGAN, which we call Invertible cGAN (IcGAN), enables to re-generate real
images with deterministic complex modifications.
Address Barcelona; Spain; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NIPSW
Notes LAMP; ADAS; 600.068 Approved no
Call Number Admin @ si @ PWR2016 Serial 2906
Permanent link to this record
 

 
Author (up) H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil; Miguel Angel Gonzalez Ballester; Rasmus R. Paulsena
Title Free-form image registration of human cochlear uCT data using skeleton similarity as anatomical prior Type Journal Article
Year 2016 Publication Patter Recognition Letters Abbreviated Journal PRL
Volume 76 Issue 1 Pages 76-82
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.060 Approved no
Call Number Admin @ si @ MFV2017b Serial 2941
Permanent link to this record
 

 
Author (up) Hugo Jair Escalante; Victor Ponce; Jun Wan; Michael A. Riegler; Baiyu Chen; Albert Clapes; Sergio Escalera; Isabelle Guyon; Xavier Baro; Pal Halvorsen; Henning Muller; Martha Larson
Title ChaLearn Joint Contest on Multimedia Challenges Beyond Visual Analysis: An Overview Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper provides an overview of the Joint Contest on Multimedia Challenges Beyond Visual Analysis. We organized an academic competition that focused on four problems that require effective processing of multimodal information in order to be solved. Two tracks were devoted to gesture spotting and recognition from RGB-D video, two fundamental problems for human computer interaction. Another track was devoted to a second round of the first impressions challenge of which the goal was to develop methods to recognize personality traits from
short video clips. For this second round we adopted a novel collaborative-competitive (i.e., coopetition) setting. The fourth track was dedicated to the problem of video recommendation for improving user experience. The challenge was open for about 45 days, and received outstanding participation: almost
200 participants registered to the contest, and 20 teams sent predictions in the final stage. The main goals of the challenge were fulfilled: the state of the art was advanced considerably in the four tracks, with novel solutions to the proposed problems (mostly relying on deep learning). However, further research is still required. The data of the four tracks will be available to
allow researchers to keep making progress in the four tracks.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes HuPBA; 602.143;MV Approved no
Call Number Admin @ si @ EPW2016 Serial 2827
Permanent link to this record
 

 
Author (up) Iiris Lusi; Sergio Escalera; Gholamreza Anbarjafari
Title SASE: RGB-Depth Database for Human Head Pose Estimation Type Conference Article
Year 2016 Publication 14th European Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Slides
Address Amsterdam; The Netherlands; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ LEA2016a Serial 2840
Permanent link to this record
 

 
Author (up) Iiris Lusi; Sergio Escalera; Gholamreza Anbarjafari
Title Human Head Pose Estimation on SASE database using Random Hough Regression Forests Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal
Volume 10165 Issue Pages
Keywords
Abstract In recent years head pose estimation has become an important task in face analysis scenarios. Given the availability of high resolution 3D sensors, the design of a high resolution head pose database would be beneficial for the community. In this paper, Random Hough Forests are used to estimate 3D head pose and location on a new 3D head database, SASE, which represents the baseline performance on the new data for an upcoming international head pose estimation competition. The data in SASE is acquired with a Microsoft Kinect 2 camera, including the RGB and depth information of 50 subjects with a large sample of head poses, allowing us to test methods for real-life scenarios. We briefly review the database while showing baseline head pose estimation results based on Random Hough Forests.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRW
Notes HuPBA; Approved no
Call Number Admin @ si @ LEA2016b Serial 2910
Permanent link to this record