Olivier Penacchio. (2009). Relative Density of L, M, S photoreceptors in the Human Retina (Vol. 135). Master's thesis, , Bellaterra, Barcelona.
|
Xavier Boix. (2009). Learning Conditional Random Fields for Stereo (Vol. 136). Master's thesis, , Bellaterra, Barcelona.
|
Shida Beigpour. (2009). Physics-based Reflectance Estimation Applied to Recoloring (Vol. 137). Master's thesis, , Bellaterra, Barcelona.
|
Jaume Gibert. (2009). Learning structural representations and graph matching paradigms in the context of object recognition (Vol. 143). Master's thesis, , .
|
Jose Carlos Rubio. (2009). Graph matching based on graphical models with application to vehicle tracking and classification at night (Vol. 144). Master's thesis, , Bellaterra, Barcelona.
|
Farshad Nourbakhsh. (2009). Colour logo recognition (Vol. 145). Master's thesis, , Bellaterra, Barcelona.
|
Enric Sala. (2009). Off-line person-dependent signature verification (Vol. 146). Master's thesis, , Bellaterra, Barcelona.
|
Wenjuan Gong. (2009). Action priors for human pose tracking by particle filter. Master's thesis, , Bellaterra, Barcelona.
|
Diego Alejandro Cheda. (2009). Monocular egomotion estimation for ADAS application (Vol. 148). Ph.D. thesis, , Bellaterra, Barcelona.
|
Javier Marin. (2009). Virtual learning for real testing (Vol. 150). Master's thesis, , bell.
|
Ivet Rafegas. (2013). Exploring Low-Level Vision Models. Case Study: Saliency Prediction (Vol. 175). Master's thesis, , .
|
Francesco Brughi. (2013). Artistic Heritage Motive Retrieval: an Explorative Study (Vol. 176). Master's thesis, , .
|
Thierry Brouard, Jordi Gonzalez, Caifeng Shan, Massimo Piccardi, & Larry S. Davis. (2014). Special issue on background modeling for foreground detection in real-world dynamic scenes. MVAP - Machine Vision and Applications, 25(5), 1101–1103.
Abstract: Although background modeling and foreground detection are not mandatory steps for computer vision applications, they may prove useful as they separate the primal objects usually called “foreground” from the remaining part of the scene called “background”, and permits different algorithmic treatment in the video processing field such as video surveillance, optical motion capture, multimedia applications, teleconferencing and human–computer interfaces. Conventional background modeling methods exploit the temporal variation of each pixel to model the background, and the foreground detection is made using change detection. The last decade witnessed very significant publications on background modeling but recently new applications in which background is not static, such as recordings taken from mobile devices or Internet videos, need new developments to detect robustly moving objects in challenging environments. Thus, effective methods for robustness to deal both with dynamic backgrounds, i
|
Joan Mas, Gemma Sanchez, & Josep Llados. (2010). SSP: Sketching slide Presentations, a Syntactic Approach. In Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers (Vol. 6020, pp. 118–129). LNCS. Springer Berlin Heidelberg.
Abstract: The design of a slide presentation is a creative process. In this process first, humans visualize in their minds what they want to explain. Then, they have to be able to represent this knowledge in an understandable way. There exists a lot of commercial software that allows to create our own slide presentations but the creativity of the user is rather limited. In this article we present an application that allows the user to create and visualize a slide presentation from a sketch. A slide may be seen as a graphical document or a diagram where its elements are placed in a particular spatial arrangement. To describe and recognize slides a syntactic approach is proposed. This approach is based on an Adjacency Grammar and a parsing methodology to cope with this kind of grammars. The experimental evaluation shows the performance of our methodology from a qualitative and a quantitative point of view. Six different slides containing different number of symbols, from 4 to 7, have been given to the users and they have drawn them without restrictions in the order of the elements. The quantitative results give an idea on how suitable is our methodology to describe and recognize the different elements in a slide.
|
Mathieu Nicolas Delalandre, Jean-Yves Ramel, Ernest Valveny, & Muhammad Muzzamil Luqman. (2010). A Performance Characterization Algorithm for Symbol Localization. In Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers (Vol. 6020, 260–271). LNCS. Springer Berlin Heidelberg.
Abstract: In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols).
|