toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marc Masana; Joost Van de Weijer; Luis Herranz;Andrew Bagdanov; Jose Manuel Alvarez edit   pdf
openurl 
  Title Domain-adaptive deep network compression Type Conference Article
  Year 2017 Publication 17th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes LAMP; 601.305; 600.106; 600.120 Approved (up) no  
  Call Number Admin @ si @ Serial 3034  
Permanent link to this record
 

 
Author Xialei Liu; Joost Van de Weijer; Andrew Bagdanov edit   pdf
openurl 
  Title RankIQA: Learning from Rankings for No-reference Image Quality Assessment Type Conference Article
  Year 2017 Publication 17th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a no-reference image quality assessment (NR-IQA) approach that learns from rankings (RankIQA). To address the problem of limited IQA dataset size, we train a Siamese Network to rank images in terms of image quality by using synthetically generated distortions for which relative image quality is known. These ranked image sets can be automatically generated without laborious human labeling. We then use fine-tuning to transfer the knowledge represented in the trained Siamese Network to a traditional CNN that estimates absolute image quality from single images. We demonstrate how our approach can be made significantly more efficient than traditional Siamese Networks by forward propagating a batch of images through a single network and backpropagating gradients derived from all pairs of images in the batch. Experiments on the TID2013 benchmark show that we improve the state-of-the-art by over 5%. Furthermore, on the LIVE benchmark we show that our approach is superior to existing NR-IQA techniques and that we even outperform the state-of-the-art in full-reference IQA (FR-IQA) methods without having to resort to high-quality reference images to infer IQA.  
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes LAMP; 600.106; 600.109; 600.120 Approved (up) no  
  Call Number Admin @ si @ LWB2017b Serial 3036  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: