|   | 
Details
   web
Records
Author Yifan Wang; Luka Murn; Luis Herranz; Fei Yang; Marta Mrak; Wei Zhang; Shuai Wan; Marc Gorriz Blanch
Title Efficient Super-Resolution for Compression Of Gaming Videos Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Due to the increasing demand for game-streaming services, efficient compression of computer-generated video is more critical than ever, especially when the available bandwidth is low. This paper proposes a super-resolution framework that improves the coding efficiency of computer-generated gaming videos at low bitrates. Most state-of-the-art super-resolution networks generalize over a variety of RGB inputs and use a unified network architecture for frames of different levels of degradation, leading to high complexity and redundancy. Since games usually consist of a limited number of fixed scenarios, we specialize one model for each scenario and assign appropriate network capacities for different QPs to perform super-resolution under the guidance of reconstructed high-quality luma components. Experimental results show that our framework achieves a superior quality-complexity trade-off compared to the ESRnet baseline, saving at most 93.59% parameters while maintaining comparable performance. The compression efficiency compared to HEVC is also improved by more than 17% BD-rate gain.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes LAMP; MACO Approved no
Call Number Admin @ si @ WMH2023 Serial 3911
Permanent link to this record
 

 
Author Guillermo Torres; Jan Rodríguez Dueñas; Sonia Baeza; Antoni Rosell; Carles Sanchez; Debora Gil
Title Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images Type Conference Article
Year 2023 Publication 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DIPMAI
Notes IAM Approved no
Call Number Admin @ si @ TRB2023 Serial 3926
Permanent link to this record
 

 
Author Alejandro Ariza-Casabona; Bartlomiej Twardowski; Tri Kurniawan Wijaya
Title Exploiting Graph Structured Cross-Domain Representation for Multi-domain Recommendation Type Conference Article
Year 2023 Publication European Conference on Information Retrieval – ECIR 2023: Advances in Information Retrieval Abbreviated Journal
Volume 13980 Issue Pages 49–65
Keywords
Abstract Multi-domain recommender systems benefit from cross-domain representation learning and positive knowledge transfer. Both can be achieved by introducing a specific modeling of input data (i.e. disjoint history) or trying dedicated training regimes. At the same time, treating domains as separate input sources becomes a limitation as it does not capture the interplay that naturally exists between domains. In this work, we efficiently learn multi-domain representation of sequential users’ interactions using graph neural networks. We use temporal intra- and inter-domain interactions as contextual information for our method called MAGRec (short for Multi-dom Ain Graph-based Recommender). To better capture all relations in a multi-domain setting, we learn two graph-based sequential representations simultaneously: domain-guided for recent user interest, and general for long-term interest. This approach helps to mitigate the negative knowledge transfer problem from multiple domains and improve overall representation. We perform experiments on publicly available datasets in different scenarios where MAGRec consistently outperforms state-of-the-art methods. Furthermore, we provide an ablation study and discuss further extensions of our method.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECIR
Notes LAMP Approved no
Call Number Admin @ si @ ATK2023 Serial 3933
Permanent link to this record
 

 
Author Zahra Raisi-Estabragh; Carlos Martin-Isla; Louise Nissen; Liliana Szabo; Victor M. Campello; Sergio Escalera; Simon Winther; Morten Bottcher; Karim Lekadir; and Steffen E. Petersen
Title Radiomics analysis enhances the diagnostic performance of CMR stress perfusion: a proof-of-concept study using the Dan-NICAD dataset Type Journal Article
Year 2023 Publication Frontiers in Cardiovascular Medicine Abbreviated Journal FCM
Volume Issue Pages
Keywords
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ RMN2023 Serial 3937
Permanent link to this record
 

 
Author Valeriya Khan; Sebastian Cygert; Bartlomiej Twardowski; Tomasz Trzcinski
Title Looking Through the Past: Better Knowledge Retention for Generative Replay in Continual Learning Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages 3496-3500
Keywords
Abstract In this work, we improve the generative replay in a continual learning setting. We notice that in VAE-based generative replay, the generated features are quite far from the original ones when mapped to the latent space. Therefore, we propose modifications that allow the model to learn and generate complex data. More specifically, we incorporate the distillation in latent space between the current and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and original data is proposed to improve generated features alignment. Further, based on the observation that the reconstructions are better for preserving knowledge, we add the cycling of generations through the previously trained model to make them closer to the original data. Our method outperforms other generative replay methods in various scenarios.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes LAMP Approved no
Call Number Admin @ si @ KCT2023 Serial 3942
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Advances in Face Presentation Attack Detection Type Book Whole
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ WGE2023a Serial 3955
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Face Presentation Attack Detection (PAD) Challenges Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 17–35
Keywords
Abstract In recent years, the security of face recognition systems has been increasingly threatened. Face Anti-spoofing (FAS) is essential to secure face recognition systems primarily from various attacks. In order to attract researchers and push forward the state of the art in Face Presentation Attack Detection (PAD), we organized three editions of Face Anti-spoofing Workshop and Competition at CVPR 2019, CVPR 2020, and ICCV 2021, which have attracted more than 800 teams from academia and industry, and greatly promoted the algorithms to overcome many challenging problems. In this chapter, we introduce the detailed competition process, including the challenge phases, timeline and evaluation metrics. Along with the workshop, we will introduce the corresponding dataset for each competition including data acquisition details, data processing, statistics, and evaluation protocol. Finally, we provide the available link to download the datasets used in the challenges.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title SLCV
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ WGE2023b Serial 3956
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Best Solutions Proposed in the Context of the Face Anti-spoofing Challenge Series Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 37–78
Keywords
Abstract The PAD competitions we organized attracted more than 835 teams from home and abroad, most of them from the industry, which shows that the topic of face anti-spoofing is closely related to daily life, and there is an urgent need for advanced algorithms to solve its application needs. Specifically, the Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round; the Chalearn Face Anti-spoofing Attack Detection Challenge attracted 340 teams in the development stage, and finally, 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively; the 3D High-Fidelity Mask Face Presentation Attack Detection Challenge attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. In this chapter, we briefly the methods developed by the teams participating in each competition, and introduce the algorithm details of the top-three ranked teams in detail.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ WGE2023d Serial 3958
Permanent link to this record
 

 
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Face Anti-spoofing Progress Driven by Academic Challenges Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 1–15
Keywords
Abstract With the ubiquity of facial authentication systems and the prevalence of security cameras around the world, the impact that facial presentation attack techniques may have is huge. However, research progress in this field has been slowed by a number of factors, including the lack of appropriate and realistic datasets, ethical and privacy issues that prevent the recording and distribution of facial images, the little attention that the community has given to potential ethnic biases among others. This chapter provides an overview of contributions derived from the organization of academic challenges in the context of face anti-spoofing detection. Specifically, we discuss the limitations of benchmarks and summarize our efforts in trying to boost research by the community via the participation in academic challenges
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title SLCV
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ WGE2023c Serial 3957
Permanent link to this record
 

 
Author Armin Mehri
Title Deep learning based architectures for cross-domain image processing Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, increasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than thoseof regular digital cameras.
This thesis aims to improve beyond-visible-spectrum machine vision by integrating multi-modal spectral sensors. The emphasis is on transforming the produced images to enhance their resolution to match expected human perception, bring the color representation close to human understanding of natural color, and improve machine vision application performance. This research focuses mainly on two tasks, image Colorization and Image Super resolution for both single- and cross-domain problems. We first start with an extensive review of the state of the art in both tasks, point out the shortcomings of existing approaches, and then present our solutions to address their limitations. Our solutions demonstrate that low-cost channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images with higher quality and closer to human perception at a lower cost than a high-cost infrared camera.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-1-5 Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ Meh2023 Serial 3959
Permanent link to this record
 

 
Author Chenshen Wu
Title Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep learning has made tremendous progress in the last decade due to the explosion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change over time. Continuous learning takes this situation into account, where the learner must adapt to a sequence of tasks, each with a different distribution. If you would naively continue training the model with a new task, the performance of the model would drop dramatically for the previously learned data. This phenomenon is known as catastrophic forgetting.
Many approaches have been proposed to address this problem, which can be divided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the existing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.
For the image generation problem, since the model can generate images from the previously learned task, it is free to apply rehearsal without any limitation. We developed two methods based on generative replay. The first one uses the generated image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.
Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective because continual learning of reID can benefit a lot from the generalization of metalearning. We also propose a distillation loss and found that the removal of the positive pairs before the distillation loss is critical.
Finally, we study continual learning for the counting problem. We study the mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual learning of object counting. To further improve results, we propose an adaptor to adapt the changing feature extractor for the fixed counter head. Extensive evaluation shows that this results in improved continual learning performance.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-0-8 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Wu2023 Serial 3960
Permanent link to this record
 

 
Author Jose Luis Gomez
Title Synth-to-real semi-supervised learning for visual tasks Type Book Whole
Year 2023 Publication Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The curse of data labeling is a costly bottleneck in supervised deep learning, where large amounts of labeled data are needed to train intelligent systems. In onboard perception for autonomous driving, this cost corresponds to the labeling of raw data from sensors such as cameras, LiDARs, RADARs, etc. Therefore, synthetic data with automatically generated ground truth (labels) has aroused as a reliable alternative for training onboard perception models.
However, synthetic data commonly suffers from synth-to-real domain shift, i.e., models trained on the synthetic domain do not show their achievable accuracy when performing in the real world. This shift needs to be addressed by techniques falling in the realm of domain adaptation (DA).
The semi-supervised learning (SSL) paradigm can be followed to address DA. In this case, a model is trained using source data with labels (here synthetic) and leverages minimal knowledge from target data (here the real world) to generate pseudo-labels. These pseudo-labels help the training process to reduce the gap between the source and the target domains. In general, we can assume accessing both, pseudo-labels and a few amounts of human-provided labels for the target-domain data. However, the most interesting and challenging setting consists in assuming that we do not have human-provided labels at all. This setting is known as unsupervised domain adaptation (UDA). This PhD focuses on applying SSL to the UDA setting, for onboard visual tasks related to autonomous driving. We start by addressing the synth-to-real UDA problem on onboard vision-based object detection (pedestrians and cars), a critical task for autonomous driving and driving assistance. In particular, we propose to apply an SSL technique known as co-training, which we adapt to work with deep models that process a multi-modal input. The multi-modality consists of the visual appearance of the images (RGB) and their monocular depth estimation. The synthetic data we use as the source domain contains both, object bounding boxes and depth information. This prior knowledge is the
starting point for the co-training technique, which iteratively labels unlabeled real-world data and uses such pseudolabels (here bounding boxes with an assigned object class) to progressively improve the labeling results. Along this
process, two models collaborate to automatically label the images, in a way that one model compensates for the errors of the other, so avoiding error drift. While this automatic labeling process is done offline, the resulting pseudolabels can be used to train object detection models that must perform in real-time onboard a vehicle. We show that multi-modal co-training improves the labeling results compared to single-modal co-training, remaining competitive compared to human labeling.
Given the success of co-training in the context of object detection, we have also adapted this technique to a more crucial and challenging visual task, namely, onboard semantic segmentation. In fact, providing labels for a single image
can take from 30 to 90 minutes for a human labeler, depending on the content of the image. Thus, developing automatic labeling techniques for this visual task is of great interest to the automotive industry. In particular, the new co-training framework addresses synth-to-real UDA by an initial stage of self-training. Intermediate models arising from this stage are used to start the co-training procedure, for which we have elaborated an accurate collaboration policy between the two models performing the automatic labeling. Moreover, our co-training seamlessly leverages datasets from different synthetic domains. In addition, the co-training procedure is agnostic to the loss function used to train the semantic segmentation models which perform the automatic labeling. We achieve state-of-the-art results on publicly available benchmark datasets, again, remaining competitive compared to human labeling.
Finally, on the ground of our previous experience, we have designed and implemented a new SSL technique for UDA in the context of visual semantic segmentation. In this case, we mimic the labeling methodology followed by human labelers. In particular, rather than labeling full images at a time, categories of semantic classes are defined and only those are labeled in a labeling pass. In fact, different human labelers can become specialists in labeling different categories. Afterward, these per-category-labeled layers are combined to provide fully labeled images. Our technique is inspired by this methodology since we perform synth-to-real UDA per category, using the self-training stage previously developed as part of our co-training framework. The pseudo-labels obtained for each category are finally
fused to obtain fully automatically labeled images. In this context, we have also contributed to the development of a new photo-realistic synthetic dataset based on path-tracing rendering. Our new SSL technique seamlessly leverages publicly available synthetic datasets as well as this new one to obtain state-of-the-art results on synth-to-real UDA for semantic segmentation. We show that the new dataset allows us to reach better labeling accuracy than previously existing datasets, at the same time that it complements well them when combined. Moreover, we also show that the new human-inspired SSL technique outperforms co-training.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Gom2023 Serial 3961
Permanent link to this record
 

 
Author Jose Elias Yauri
Title Deep Learning Based Data Fusion Approaches for the Assessment of Cognitive States on EEG Signals Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract For millennia, the study of the couple brain-mind has fascinated the humanity in order to understand the complex nature of cognitive states. A cognitive state is the state of the mind at a specific time and involves cognition activities to acquire and process information for making a decision, solving a problem, or achieving a goal.
While normal cognitive states assist in the successful accomplishment of tasks; on the contrary, abnormal states of the mind can lead to task failures due to a reduced cognition capability. In this thesis, we focus on the assessment of cognitive states by means of the analysis of ElectroEncephaloGrams (EEG) signals using deep learning methods. EEG records the electrical activity of the brain using a set of electrodes placed on the scalp that output a set of spatiotemporal signals that are expected to be correlated to a specific mental process.
From the point of view of artificial intelligence, any method for the assessment of cognitive states using EEG signals as input should face several challenges. On the one hand, one should determine which is the most suitable approach for the optimal combination of the multiple signals recorded by EEG electrodes. On the other hand, one should have a protocol for the collection of good quality unambiguous annotated data, and an experimental design for the assessment of the generalization and transfer of models. In order to tackle them, first, we propose several convolutional neural architectures to perform data fusion of the signals recorded by EEG electrodes, at raw signal and feature levels. Four channel fusion methods, easy to incorporate into any neural network architecture, are proposed and assessed. Second, we present a method to create an unambiguous dataset for the prediction of cognitive mental workload using serious games and an Airbus-320 flight simulator. Third, we present a validation protocol that takes into account the levels of generalization of models based on the source and amount of test data.
Finally, the approaches for the assessment of cognitive states are applied to two use cases of high social impact: the assessment of mental workload for personalized support systems in the cockpit and the detection of epileptic seizures. The results obtained from the first use case show the feasibility of task transfer of models trained to detect workload in serious games to real flight scenarios. The results from the second use case show the generalization capability of our EEG channel fusion methods at k-fold cross-validation, patient-specific, and population levels.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Aura Hernandez;Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ Yau2023 Serial 3962
Permanent link to this record
 

 
Author Shiqi Yang
Title Towards Source-Free Domain Adaption of Neural Networks in an Open World Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Though they achieve great success, deep neural networks typically require a huge
amount of labeled data for training. However, collecting labeled data is often laborious and expensive. It would, therefore, be ideal if the knowledge obtained from label-rich datasets could be transferred to unlabeled data. However, deep networks are weak at generalizing to unseen domains, even when the differences are only subtle between the datasets. In real-world situations, a typical factor impairing the model generalization ability is the distribution shift between data from different domains, which is a long-standing problem usually termed as (unsupervised) domain adaptation.
A crucial requirement in the methodology of these domain adaptation methods is that they require access to source domain data during the adaptation process to the target domain. Accessibility to the source data of a trained source model is often impossible in real-world applications, for example, when deploying domain adaptation algorithms on mobile devices where the computational capacity is limited or in situations where data privacy rules limit access to the source domain data. Without access to the source domain data, existing methods suffer from inferior performance. Thus, in this thesis, we investigate domain adaptation without source data (termed as source-free domain adaptation) in multiple different scenarios that focus on image classification tasks.
We first study the source-free domain adaptation problem in a closed-set setting,
where the label space of different domains is identical. Only accessing the pretrained source model, we propose to address source-free domain adaptation from the perspective of unsupervised clustering. We achieve this based on nearest neighborhood clustering. In this way, we can transfer the challenging source-free domain adaptation task to a type of clustering problem. The final optimization objective is an upper bound containing only two simple terms, which can be explained as discriminability and diversity. We show that this allows us to relate several other methods in domain adaptation, unsupervised clustering and contrastive learning via the perspective of discriminability and diversity.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-3-9 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Yan2023 Serial 3963
Permanent link to this record
 

 
Author Yi Xiao
Title Advancing Vision-based End-to-End Autonomous Driving Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In autonomous driving, artificial intelligence (AI) processes the traffic environment to drive the vehicle to a desired destination. Currently, there are different paradigms that address the development of AI-enabled drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception, maneuver planning, and control. On the other hand, we find end-to-end driving approaches that attempt to learn the direct mapping of raw data from input sensors to vehicle control signals. The latter are relatively less studied but are gaining popularity as they are less demanding in terms of data labeling. Therefore, in this thesis, our goal is to investigate end-to-end autonomous driving.
We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth information as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordancebased driving model. In this case, the trained affordance-based model can achieve good performance while requiring less human-labeled data, and it can provide interpretability regarding driving actions. Finally, we present a new pure vision-based end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large amounts of human-labeled data.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Antonio Lopez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-4-6 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Xia2023 Serial 3964
Permanent link to this record