|   | 
Details
   web
Records
Author Naila Murray; Luca Marchesotti; Florent Perronnin
Title AVA: A Large-Scale Database for Aesthetic Visual Analysis Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2408-2415
Keywords
Abstract With the ever-expanding volume of visual content available, the ability to organize and navigate such content by aesthetic preference is becoming increasingly important. While still in its nascent stage, research into computational models of aesthetic preference already shows great potential. However, to advance research, realistic, diverse and challenging databases are needed. To this end, we introduce a new large-scale database for conducting Aesthetic Visual Analysis: AVA. It contains over 250,000 images along with a rich variety of meta-data including a large number of aesthetic scores for each image, semantic labels for over 60 categories as well as labels related to photographic style. We show the advantages of AVA with respect to existing databases in terms of scale, diversity, and heterogeneity of annotations. We then describe several key insights into aesthetic preference afforded by AVA. Finally, we demonstrate, through three applications, how the large scale of AVA can be leveraged to improve performance on existing preference tasks
Address (down) Providence, Rhode Islan
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes CIC Approved no
Call Number Admin @ si @ MMP2012a Serial 2025
Permanent link to this record
 

 
Author Chris Bahnsen; David Vazquez; Antonio Lopez; Thomas B. Moeslund
Title Learning to Remove Rain in Traffic Surveillance by Using Synthetic Data Type Conference Article
Year 2019 Publication 14th International Conference on Computer Vision Theory and Applications Abbreviated Journal
Volume Issue Pages 123-130
Keywords Rain Removal; Traffic Surveillance; Image Denoising
Abstract Rainfall is a problem in automated traffic surveillance. Rain streaks occlude the road users and degrade the overall visibility which in turn decrease object detection performance. One way of alleviating this is by artificially removing the rain from the images. This requires knowledge of corresponding rainy and rain-free images. Such images are often produced by overlaying synthetic rain on top of rain-free images. However, this method fails to incorporate the fact that rain fall in the entire three-dimensional volume of the scene. To overcome this, we introduce training data from the SYNTHIA virtual world that models rain streaks in the entirety of a scene. We train a conditional Generative Adversarial Network for rain removal and apply it on traffic surveillance images from SYNTHIA and the AAU RainSnow datasets. To measure the applicability of the rain-removed images in a traffic surveillance context, we run the YOLOv2 object detection algorithm on the original and rain-removed frames. The results on SYNTHIA show an 8% increase in detection accuracy compared to the original rain image. Interestingly, we find that high PSNR or SSIM scores do not imply good object detection performance.
Address (down) Praga; Czech Republic; February 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ BVL2019 Serial 3256
Permanent link to this record
 

 
Author J.Kuhn; A.Nussbaumer; J.Pirker; Dimosthenis Karatzas; A. Pagani; O.Conlan; M.Memmel; C.M.Steiner; C.Gutl; D.Albert; Andreas Dengel
Title Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space Type Conference Article
Year 2015 Publication Workshop Proceedings on the 11th International Conference on Intelligent Environments Abbreviated Journal
Volume 19 Issue Pages 373-380
Keywords
Abstract Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
Address (down) Praga; Chzech Republic; July 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IE
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ KNP2015 Serial 2694
Permanent link to this record
 

 
Author Stefan Schurischuster; Beatriz Remeseiro; Petia Radeva; Martin Kampel
Title A Preliminary Study of Image Analysis for Parasite Detection on Honey Bees Type Conference Article
Year 2018 Publication 15th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 10882 Issue Pages 465-473
Keywords
Abstract Varroa destructor is a parasite harming bee colonies. As the worldwide bee population is in danger, beekeepers as well as researchers are looking for methods to monitor the health of bee hives. In this context, we present a preliminary study to detect parasites on bee videos by means of image analysis and machine learning techniques. For this purpose, each video frame is analyzed individually to extract bee image patches, which are then processed to compute image descriptors and finally classified into mite and no mite bees. The experimental results demonstrated the adequacy of the proposed method, which will be a perfect stepping stone for a further bee monitoring system.
Address (down) Povoa de Varzim; Portugal; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIAR
Notes MILAB; no proj Approved no
Call Number Admin @ si @ SRR2018a Serial 3110
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Vegetation Index Estimation from Monospectral Images Type Conference Article
Year 2018 Publication 15th International Conference on Images Analysis and Recognition Abbreviated Journal
Volume 10882 Issue Pages 353-362
Keywords
Abstract This paper proposes a novel approach to estimate Normalized Difference Vegetation Index (NDVI) from just the red channel of a RGB image. The NDVI index is defined as the ratio of the difference of the red and infrared radiances over their sum. In other words, information from the red channel of a RGB image and the corresponding infrared spectral band are required for its computation. In the current work the NDVI index is estimated just from the red channel by training a Conditional Generative Adversarial Network (CGAN). The architecture proposed for the generative network consists of a single level structure, which combines at the final layer results from convolutional operations together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the training dataset, rather than the index automatically generated. Experimental results with a large set of real images are provided showing that a Conditional GAN single level model represents an acceptable approach to estimate NDVI index.
Address (down) Povoa de Varzim; Portugal; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIAR
Notes MSIAU; 600.086; 600.130; 600.122 Approved no
Call Number Admin @ si @ SSV2018c Serial 3196
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa
Title On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow Type Conference Article
Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 6111 Issue Pages 230-239
Keywords
Abstract This paper presents a robust technique for estimating on-board monocular vision system pose. The proposed approach is based on a dense optical flow that is robust against shadows, reflections and illumination changes. A RANSAC based scheme is used to cope with the outliers in the optical flow. The proposed technique is intended to be used in driver assistance systems for applications such as obstacle or pedestrian detection. Experimental results on different scenarios, both from synthetic and real sequences, shows usefulness of the proposed approach.
Address (down) Povoa de Varzim (Portugal)
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium
Area Expedition Conference ICIAR
Notes ADAS Approved no
Call Number ADAS @ adas @ OnS2010 Serial 1342
Permanent link to this record
 

 
Author Diego Cheda; Daniel Ponsa; Antonio Lopez
Title Monocular Egomotion Estimation based on Image Matching Type Conference Article
Year 2012 Publication 1st International Conference on Pattern Recognition Applications and Methods Abbreviated Journal
Volume Issue Pages 425-430
Keywords SLAM
Abstract
Address (down) Portugal
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRAM
Notes ADAS Approved no
Call Number Admin @ si @ CPL2012a;; ADAS @ adas @ Serial 2011
Permanent link to this record
 

 
Author Cristhian Aguilera; Xavier Soria; Angel Sappa; Ricardo Toledo
Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal
Volume Issue Pages
Keywords Multispectral Imaging; Free Sensor Model; Neural Network
Abstract This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired|referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a nave color correction technique based on mean square
error minimization are provided.
Address (down) Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.118; 600.122 Approved no
Call Number Admin @ si @ ASS2017 Serial 2918
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Learning to Colorize Infrared Images Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal
Volume Issue Pages
Keywords CNN in multispectral imaging; Image colorization
Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.
Address (down) Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no
Call Number Admin @ si @ Serial 2919
Permanent link to this record
 

 
Author Carles Sanchez; Antonio Esteban Lansaque; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title Towards a Videobronchoscopy Localization System from Airway Centre Tracking Type Conference Article
Year 2017 Publication 12th International Conference on Computer Vision Theory and Applications Abbreviated Journal
Volume Issue Pages 352-359
Keywords Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
Abstract Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Address (down) Porto; Portugal; February 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ SEB2017 Serial 2943
Permanent link to this record
 

 
Author Bojana Gajic; Eduard Vazquez; Ramon Baldrich
Title Evaluation of Deep Image Descriptors for Texture Retrieval Type Conference Article
Year 2017 Publication Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017) Abbreviated Journal
Volume Issue Pages 251-257
Keywords Texture Representation; Texture Retrieval; Convolutional Neural Networks; Psychophysical Evaluation
Abstract The increasing complexity learnt in the layers of a Convolutional Neural Network has proven to be of great help for the task of classification. The topic has received great attention in recently published literature.
Nonetheless, just a handful of works study low-level representations, commonly associated with lower layers. In this paper, we explore recent findings which conclude, counterintuitively, the last layer of the VGG convolutional network is the best to describe a low-level property such as texture. To shed some light on this issue, we are proposing a psychophysical experiment to evaluate the adequacy of different layers of the VGG network for texture retrieval. Results obtained suggest that, whereas the last convolutional layer is a good choice for a specific task of classification, it might not be the best choice as a texture descriptor, showing a very poor performance on texture retrieval. Intermediate layers show the best performance, showing a good combination of basic filters, as in the primary visual cortex, and also a degree of higher level information to describe more complex textures.
Address (down) Porto, Portugal; 27 February – 1 March 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes CIC; 600.087 Approved no
Call Number Admin @ si @ Serial 3710
Permanent link to this record
 

 
Author Fadi Dornaika; Bogdan Raducanu
Title Out-of-Sample Embedding for Manifold Learning Applied to Face Recognition Type Conference Article
Year 2013 Publication IEEE International Workshop on Analysis and Modeling of Faces and Gestures Abbreviated Journal
Volume Issue Pages 862-868
Keywords
Abstract Manifold learning techniques are affected by two critical aspects: (i) the design of the adjacency graphs, and (ii) the embedding of new test data---the out-of-sample problem. For the first aspect, the proposed schemes were heuristically driven. For the second aspect, the difficulty resides in finding an accurate mapping that transfers unseen data samples into an existing manifold. Past works addressing these two aspects were heavily parametric in the sense that the optimal performance is only reached for a suitable parameter choice that should be known in advance. In this paper, we demonstrate that sparse coding theory not only serves for automatic graph reconstruction as shown in recent works, but also represents an accurate alternative for out-of-sample embedding. Considering for a case study the Laplacian Eigenmaps, we applied our method to the face recognition problem. To evaluate the effectiveness of the proposed out-of-sample embedding, experiments are conducted using the k-nearest neighbor (KNN) and Kernel Support Vector Machines (KSVM) classifiers on four public face databases. The experimental results show that the proposed model is able to achieve high categorization effectiveness as well as high consistency with non-linear embeddings/manifolds obtained in batch modes.
Address (down) Portland; USA; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes OR; 600.046;MV Approved no
Call Number Admin @ si @ DoR2013 Serial 2236
Permanent link to this record
 

 
Author Ivo Everts; Jan van Gemert; Theo Gevers
Title Evaluation of Color STIPs for Human Action Recognition Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2850-2857
Keywords
Abstract This paper is concerned with recognizing realistic human actions in videos based on spatio-temporal interest points (STIPs). Existing STIP-based action recognition approaches operate on intensity representations of the image data. Because of this, these approaches are sensitive to disturbing photometric phenomena such as highlights and shadows. Moreover, valuable information is neglected by discarding chromaticity from the photometric representation. These issues are addressed by Color STIPs. Color STIPs are multi-channel reformulations of existing intensity-based STIP detectors and descriptors, for which we consider a number of chromatic representations derived from the opponent color space. This enhanced modeling of appearance improves the quality of subsequent STIP detection and description. Color STIPs are shown to substantially outperform their intensity-based counterparts on the challenging UCF~sports, UCF11 and UCF50 action recognition benchmarks. Moreover, the results show that color STIPs are currently the single best low-level feature choice for STIP-based approaches to human action recognition.
Address (down) Portland; oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN Medium
Area Expedition Conference CVPR
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ EGG2013 Serial 2364
Permanent link to this record
 

 
Author Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera
Title Graph Cuts Optimization for Multi-Limb Human Segmentation in Depth Maps Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 726-732
Keywords
Abstract We present a generic framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs in depth maps. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α-β swap Graph-cuts algorithm. Moreover, depth of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.
Address (down) Portland; Oregon; June 2013
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ HZM2012b Serial 2046
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Fahad Shahbaz Khan; Damien Muselet; christophe Ducottet; Cecile Barat
Title Discriminative Color Descriptors Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2866 - 2873
Keywords
Abstract Color description is a challenging task because of large variations in RGB values which occur due to scene accidental events, such as shadows, shading, specularities, illuminant color changes, and changes in viewing geometry. Traditionally, this challenge has been addressed by capturing the variations in physics-based models, and deriving invariants for the undesired variations. The drawback of this approach is that sets of distinguishable colors in the original color space are mapped to the same value in the photometric invariant space. This results in a drop of discriminative power of the color description. In this paper we take an information theoretic approach to color description. We cluster color values together based on their discriminative power in a classification problem. The clustering has the explicit objective to minimize the drop of mutual information of the final representation. We show that such a color description automatically learns a certain degree of photometric invariance. We also show that a universal color representation, which is based on other data sets than the one at hand, can obtain competing performance. Experiments show that the proposed descriptor outperforms existing photometric invariants. Furthermore, we show that combined with shape description these color descriptors obtain excellent results on four challenging datasets, namely, PASCAL VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.
Address (down) Portland; Oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN Medium
Area Expedition Conference CVPR
Notes CIC; 600.048 Approved no
Call Number Admin @ si @ KWK2013a Serial 2262
Permanent link to this record