toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Diego Velazquez edit  isbn
openurl 
  Title Towards Robustness in Computer-based Image Understanding Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This thesis embarks on an exploratory journey into robustness in deep learning,
with a keen focus on the intertwining facets of generalization, explainability, and
edge cases within the realm of computer vision. In deep learning, robustness
epitomizes a model’s resilience and flexibility, grounded on its capacity to generalize across diverse data distributions, explain its predictions transparently, and navigate the intricacies of edge cases effectively. The challenges associated with robust generalization are multifaceted, encompassing the model’s performance on unseen data and its defense against out-of-distribution data and adversarial attacks. Bridging this gap, the potential of Embedding Propagation (EP) for improving out-of-distribution generalization is explored. EP is depicted as a powerful tool facilitating manifold smoothing, which in turn fortifies the model’s robustness against adversarial onslaughts and bolsters performance in few-shot and self-/semi-supervised learning scenarios. In the labyrinth of deep learning models, the path to robustness often intersects with explainability. As model complexity increases, so does the urgency to decipher their decision-making
processes. Acknowledging this, the thesis introduces a robust framework for
evaluating and comparing various counterfactual explanation methods, echoing
the imperative of explanation quality over quantity and spotlighting the intricacies of diversifying explanations. Simultaneously, the deep learning landscape is fraught with edge cases – anomalies in the form of small objects or rare instances in object detection tasks that defy the norm. Confronting this, the
thesis presents an extension of the DETR (DEtection TRansformer) model to enhance small object detection. The devised DETR-FP, embedding the Feature Pyramid technique, demonstrating improvement in small objects detection accuracy, albeit facing challenges like high computational costs. With emergence of foundation models in mind, the thesis unveils EarthView, the largest scale remote sensing dataset to date, built for the self-supervised learning of a robust foundational model for remote sensing. Collectively, these studies contribute to the grand narrative of robustness in deep learning, weaving together the strands of generalization, explainability, and edge case performance. Through these methodological advancements and novel datasets, the thesis calls for continued exploration, innovation, and refinement to fortify the bastion of robust computer vision.
 
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Jordi Gonzalez;Josep M. Gonfaus;Pau Rodriguez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-81-126409-5-3 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Vel2023 Serial 3965  
Permanent link to this record
 

 
Author Bonifaz Stuhr edit  isbn
openurl 
  Title Towards Unsupervised Representation Learning: Learning, Evaluating and Transferring Visual Representations Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Unsupervised representation learning aims at finding methods that learn representations from data without annotation-based signals. Abstaining from annotations not only leads to economic benefits but may – and to some extent already does – result in advantages regarding the representation’s structure, robustness, and generalizability to different tasks. In the long run, unsupervised methods are expected to surpass their supervised counterparts due to the reduction of human intervention and the inherently more general setup that does not bias the optimization towards an objective originating from specific annotation-based signals. While major advantages of unsupervised representation learning have been recently observed in natural language processing, supervised methods still dominate in vision domains for most tasks. In this dissertation, we contribute to the field of unsupervised (visual) representation learning from three perspectives: (i) Learning representations: We design unsupervised, backpropagation-free Convolutional Self-Organizing Neural Networks (CSNNs) that utilize self-organization- and Hebbian-based learning rules to learn convolutional kernels and masks to achieve deeper backpropagation-free models. Thereby, we observe that backpropagation-based and -free methods can suffer from an objective function mismatch between the unsupervised pretext task and the target task. This mismatch can lead to performance decreases for the target task. (ii) Evaluating representations: We build upon the widely used (non-)linear evaluation protocol to define pretext- and target-objective-independent metrics for measuring the objective function mismatch. With these metrics, we evaluate various pretext and target tasks and disclose dependencies of the objective function mismatch concerning different parts of the training and model setup. (iii) Transferring representations: We contribute CARLANE, the first 3-way sim-to-real domain adaptation benchmark for 2D lane detection. We adopt several well-known unsupervised domain adaptation methods as baselines and propose a method based on prototypical cross-domain self-supervised learning. Finally, we focus on pixel-based unsupervised domain adaptation and contribute a content-consistent unpaired image-to-image translation method that utilizes masks, global and local discriminators, and similarity sampling to mitigate content inconsistencies, as well as feature-attentive denormalization to fuse content-based statistics into the generator stream. In addition, we propose the cKVD metric to incorporate class-specific content inconsistencies into perceptual metrics for measuring translation quality.  
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIA Place of Publication Editor Jordi Gonzalez;Jurgen Brauer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-126409-6-0 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Stu2023 Serial 3966  
Permanent link to this record
 

 
Author Ruben Perez Tito edit  isbn
openurl 
  Title Exploring the role of Text in Visual Question Answering on Natural Scenes and Documents Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Visual Question Answering (VQA) is the task where given an image and a natural language question, the objective is to generate a natural language answer. At the intersection between computer vision and natural language processing, this task can be seen as a measure of image understanding capabilities, as it requires to reason about objects, actions, colors, positions, the relations between the different elements as well as commonsense reasoning, world knowledge, arithmetic skills and natural language understanding. However, even though the text present in the images conveys important semantically rich information that is explicit and not available in any other form, most VQA methods remained illiterate, largely
ignoring the text despite its potential significance. In this thesis, we set out on a journey to bring reading capabilities to computer vision models applied to the VQA task, creating new datasets and methods that can read, reason and integrate the text with other visual cues in natural scene images and documents.
In Chapter 3, we address the combination of scene text with visual information to fully understand all the nuances of natural scene images. To achieve this objective, we define a new sub-task of VQA that requires reading the text in the image, and highlight the limitations of the current methods. In addition, we propose a new architecture that integrates both modalities and jointly reasons about textual and visual features. In Chapter 5, we shift the domain of VQA with reading capabilities and apply it on scanned industry document images, providing a high-level end-purpose perspective to Document Understanding, which has been
primarily focused on digitizing the document’s contents and extracting key values without considering the ultimate purpose of the extracted information. For this, we create a dataset which requires methods to reason about the unique and challenging elements of documents, such as text, images, tables, graphs and complex layouts, to provide accurate answers in natural language. However, we observed that explicit visual features provide a slight contribution in the overall performance, since the main information is usually conveyed within the text and its position. In consequence, in Chapter 6, we propose VQA on infographic images, seeking for document images with more visually rich elements that require to fully exploit visual information in order to answer the questions. We show the performance gap of
different methods when used over industry scanned and infographic images, and propose a new method that integrates the visual features in early stages, which allows the transformer architecture to exploit the visual features during the self-attention operation. Instead, in Chapter 7, we apply VQA on a big collection of single-page documents, where the methods must find which documents are relevant to answer the question, and provide the answer itself. Finally, in Chapter 8, mimicking real-world application problems where systems must process documents with multiple pages, we address the multipage document visual question answering task. We demonstrate the limitations of existing methods, including models specifically designed to process long sequences. To overcome these limitations, we propose
a hierarchical architecture that can process long documents, answer questions, and provide the index of the page where the information to answer the question is located as an explainability measure.
 
  Address (down)  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-5-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Per2023 Serial 3967  
Permanent link to this record
 

 
Author Marcin Przewiezlikowski; Mateusz Pyla; Bartosz Zielinski; Bartłomiej Twardowski; Jacek Tabor; Marek Smieja edit   pdf
url  openurl
  Title Augmentation-aware Self-supervised Learning with Guided Projector Type Miscellaneous
  Year 2023 Publication arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning (SSL) is a powerful technique for learning robust representations from unlabeled data. By learning to remain invariant to applied data augmentations, methods such as SimCLR and MoCo are able to reach quality on par with supervised approaches. However, this invariance may be harmful to solving some downstream tasks which depend on traits affected by augmentations used during pretraining, such as color. In this paper, we propose to foster sensitivity to such characteristics in the representation space by modifying the projector network, a common component of self-supervised architectures. Specifically, we supplement the projector with information about augmentations applied to images. In order for the projector to take advantage of this auxiliary conditioning when solving the SSL task, the feature extractor learns to preserve the augmentation information in its representations. Our approach, coined Conditional Augmentation-aware Self-supervised Learning (CASSLE), is directly applicable to typical joint-embedding SSL methods regardless of their objective functions. Moreover, it does not require major changes in the network architecture or prior knowledge of downstream tasks. In addition to an analysis of sensitivity towards different data augmentations, we conduct a series of experiments, which show that CASSLE improves over various SSL methods, reaching state-of-the-art performance in multiple downstream tasks.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ PPZ2023 Serial 3971  
Permanent link to this record
 

 
Author Mateusz Pyla; Kamil Deja; Bartłomiej Twardowski; Tomasz Trzcinski edit   pdf
url  openurl
  Title Bayesian Flow Networks in Continual Learning Type Miscellaneous
  Year 2023 Publication arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Bayesian Flow Networks (BFNs) has been recently proposed as one of the most promising direction to universal generative modelling, having ability to learn any of the data type. Their power comes from the expressiveness of neural networks and Bayesian inference which make them suitable in the context of continual learning. We delve into the mechanics behind BFNs and conduct the experiments to empirically verify the generative capabilities on non-stationary data.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ PDT2023 Serial 3972  
Permanent link to this record
 

 
Author Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu edit  url
openurl 
  Title CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges Type Journal Article
  Year 2023 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume Issue Pages  
  Keywords  
  Abstract CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers.
 
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ PGL2023 Serial 3973  
Permanent link to this record
 

 
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Aftab Alam; Rosie Campbell; Petrus J Gerrits; Jonas Gregorio de Souza; Afifa Khan; Maria Suarez Moreno; Jack Tomaney; Rebecca C Roberts; Cameron A Petrie edit  url
doi  openurl
  Title Curriculum learning-based strategy for low-density archaeological mound detection from historical maps in India and Pakistan Type Journal Article
  Year 2023 Publication Scientific Reports Abbreviated Journal ScR  
  Volume 13 Issue Pages 11257  
  Keywords  
  Abstract This paper presents two algorithms for the large-scale automatic detection and instance segmentation of potential archaeological mounds on historical maps. Historical maps present a unique source of information for the reconstruction of ancient landscapes. The last 100 years have seen unprecedented landscape modifications with the introduction and large-scale implementation of mechanised agriculture, channel-based irrigation schemes, and urban expansion to name but a few. Historical maps offer a window onto disappearing landscapes where many historical and archaeological elements that no longer exist today are depicted. The algorithms focus on the detection and shape extraction of mound features with high probability of being archaeological settlements, mounds being one of the most commonly documented archaeological features to be found in the Survey of India historical map series, although not necessarily recognised as such at the time of surveying. Mound features with high archaeological potential are most commonly depicted through hachures or contour-equivalent form-lines, therefore, an algorithm has been designed to detect each of those features. Our proposed approach addresses two of the most common issues in archaeological automated survey, the low-density of archaeological features to be detected, and the small amount of training data available. It has been applied to all types of maps available of the historic 1″ to 1-mile series, thus increasing the complexity of the detection. Moreover, the inclusion of synthetic data, along with a Curriculum Learning strategy, has allowed the algorithm to better understand what the mound features look like. Likewise, a series of filters based on topographic setting, form, and size have been applied to improve the accuracy of the models. The resulting algorithms have a recall value of 52.61% and a precision of 82.31% for the hachure mounds, and a recall value of 70.80% and a precision of 70.29% for the form-line mounds, which allowed the detection of nearly 6000 mound features over an area of 470,500 km2, the largest such approach to have ever been applied. If we restrict our focus to the maps most similar to those used in the algorithm training, we reach recall values greater than 60% and precision values greater than 90%. This approach has shown the potential to implement an adaptive algorithm that allows, after a small amount of retraining with data detected from a new map, a better general mound feature detection in the same map.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ BOL2023 Serial 3976  
Permanent link to this record
 

 
Author Ruben Ballester; Carles Casacuberta; Sergio Escalera edit   pdf
url  openurl
  Title Decorrelating neurons using persistence Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a novel way to improve the generalisation capacity of deep learning models by reducing high correlations between neurons. For this, we present two regularisation terms computed from the weights of a minimum spanning tree of the clique whose vertices are the neurons of a given network (or a sample of those), where weights on edges are correlation dissimilarities. We provide an extensive set of experiments to validate the effectiveness of our terms, showing that they outperform popular ones. Also, we demonstrate that naive minimisation of all correlations between neurons obtains lower accuracies than our regularisation terms, suggesting that redundancies play a significant role in artificial neural networks, as evidenced by some studies in neuroscience for real networks. We include a proof of differentiability of our regularisers, thus developing the first effective topological persistence-based regularisation terms that consider the whole set of neurons and that can be applied to a feedforward architecture in any deep learning task such as classification, data generation, or regression.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BCE2023 Serial 3977  
Permanent link to this record
 

 
Author Chuanming Tang; Kai Wang; Joost van de Weijer; Jianlin Zhang; Yongmei Huang edit   pdf
url  openurl
  Title Exploiting Image-Related Inductive Biases in Single-Branch Visual Tracking Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite achieving state-of-the-art performance in visual tracking, recent single-branch trackers tend to overlook the weak prior assumptions associated with the Vision Transformer (ViT) encoder and inference pipeline. Moreover, the effectiveness of discriminative trackers remains constrained due to the adoption of the dual-branch pipeline. To tackle the inferior effectiveness of the vanilla ViT, we propose an Adaptive ViT Model Prediction tracker (AViTMP) to bridge the gap between single-branch network and discriminative models. Specifically, in the proposed encoder AViT-Enc, we introduce an adaptor module and joint target state embedding to enrich the dense embedding paradigm based on ViT. Then, we combine AViT-Enc with a dense-fusion decoder and a discriminative target model to predict accurate location. Further, to mitigate the limitations of conventional inference practice, we present a novel inference pipeline called CycleTrack, which bolsters the tracking robustness in the presence of distractors via bidirectional cycle tracking verification. Lastly, we propose a dual-frame update inference strategy that adeptively handles significant challenges in long-term scenarios. In the experiments, we evaluate AViTMP on ten tracking benchmarks for a comprehensive assessment, including LaSOT, LaSOTExtSub, AVisT, etc. The experimental results unequivocally establish that AViTMP attains state-of-the-art performance, especially on long-time tracking and robustness.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ TWW2023 Serial 3978  
Permanent link to this record
 

 
Author Francesco Fabbri; Xianghang Liu; Jack R. McKenzie; Bartlomiej Twardowski; Tri Kurniawan Wijaya edit   pdf
url  openurl
  Title FedFNN: Faster Training Convergence Through Update Predictions in Federated Recommender Systems Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Federated Learning (FL) has emerged as a key approach for distributed machine learning, enhancing online personalization while ensuring user data privacy. Instead of sending private data to a central server as in traditional approaches, FL decentralizes computations: devices train locally and share updates with a global server. A primary challenge in this setting is achieving fast and accurate model training – vital for recommendation systems where delays can compromise user engagement. This paper introduces FedFNN, an algorithm that accelerates decentralized model training. In FL, only a subset of users are involved in each training epoch. FedFNN employs supervised learning to predict weight updates from unsampled users, using updates from the sampled set. Our evaluations, using real and synthetic data, show: 1. FedFNN achieves training speeds 5x faster than leading methods, maintaining or improving accuracy; 2. the algorithm's performance is consistent regardless of client cluster variations; 3. FedFNN outperforms other methods in scenarios with limited client availability, converging more quickly.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ FLM2023 Serial 3980  
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer edit   pdf
url  openurl
  Title Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ CYC2023 Serial 3981  
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa; Patricio Humanante; Arash Akbarinia edit  url
openurl 
  Title Dense extreme inception network for edge detection Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 139 Issue Pages 109461  
  Keywords  
  Abstract Edge detection is the basis of many computer vision applications. State of the art predominantly relies on deep learning with two decisive factors: dataset content and network architecture. Most of the publicly available datasets are not curated for edge detection tasks. Here, we address this limitation. First, we argue that edges, contours and boundaries, despite their overlaps, are three distinct visual features requiring separate benchmark datasets. To this end, we present a new dataset of edges. Second, we propose a novel architecture, termed Dense Extreme Inception Network for Edge Detection (DexiNed), that can be trained from scratch without any pre-trained weights. DexiNed outperforms other algorithms in the presented dataset. It also generalizes well to other datasets without any fine-tuning. The higher quality of DexiNed is also perceptually evident thanks to the sharper and finer edges it outputs.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SSH2023 Serial 3982  
Permanent link to this record
 

 
Author Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit  url
doi  openurl
  Title Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images Type Journal Article
  Year 2023 Publication Applied Sciences Abbreviated Journal AS  
  Volume 13 Issue 18 Pages  
  Keywords thermal; object detection; concept drift; conditioning; weather recognition  
  Abstract Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ SNE2023 Serial 3983  
Permanent link to this record
 

 
Author Daniel Marczak; Grzegorz Rypesc; Sebastian Cygert; Tomasz Trzcinski; Bartłomiej Twardowski edit   pdf
url  openurl
  Title Generalized Continual Category Discovery Type Miscellaneous
  Year 2023 Publication arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Most of Continual Learning (CL) methods push the limit of supervised learning settings, where an agent is expected to learn new labeled tasks and not forget previous knowledge. However, these settings are not well aligned with real-life scenarios, where a learning agent has access to a vast amount of unlabeled data encompassing both novel (entirely unlabeled) classes and examples from known classes. Drawing inspiration from Generalized Category Discovery (GCD), we introduce a novel framework that relaxes this assumption. Precisely, in any task, we allow for the existence of novel and known classes, and one must use continual version of unsupervised learning methods to discover them. We call this setting Generalized Continual Category Discovery (GCCD). It unifies CL and GCD, bridging the gap between synthetic benchmarks and real-life scenarios. With a series of experiments, we present that existing methods fail to accumulate knowledge from subsequent tasks in which unlabeled samples of novel classes are present. In light of these limitations, we propose a method that incorporates both supervised and unsupervised signals and mitigates the forgetting through the use of centroid adaptation. Our method surpasses strong CL methods adopted for GCD techniques and presents a superior representation learning performance.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ MRC2023 Serial 3985  
Permanent link to this record
 

 
Author Hao Wu; Alejandro Ariza-Casabona; Bartłomiej Twardowski; Tri Kurniawan Wijaya edit   pdf
url  openurl
  Title MM-GEF: Multi-modal representation meet collaborative filtering Type Miscellaneous
  Year 2023 Publication ARXIV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In modern e-commerce, item content features in various modalities offer accurate yet comprehensive information to recommender systems. The majority of previous work either focuses on learning effective item representation during modelling user-item interactions, or exploring item-item relationships by analysing multi-modal features. Those methods, however, fail to incorporate the collaborative item-user-item relationships into the multi-modal feature-based item structure. In this work, we propose a graph-based item structure enhancement method MM-GEF: Multi-Modal recommendation with Graph Early-Fusion, which effectively combines the latent item structure underlying multi-modal contents with the collaborative signals. Instead of processing the content feature in different modalities separately, we show that the early-fusion of multi-modal features provides significant improvement. MM-GEF learns refined item representations by injecting structural information obtained from both multi-modal and collaborative signals. Through extensive experiments on four publicly available datasets, we demonstrate systematical improvements of our method over state-of-the-art multi-modal recommendation methods.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WAT2023 Serial 3988  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: