Matthias S. Keil, Gabriel Cristobal, & Heiko Neumann. (2006). Gradient representation and perception in the early visual system – A novel account of Mach band formation. VR - Vision Research, 46(17): 2659–2674.
|
Anonymous. (2006). A Low Computational-Cost Method to Fuse IKONOS Images Using the Spectral Response Function of Its Sensors. IEEE Transactions on Geoscience and Remote Sensing, 44(6): 1683–1691.
|
Shigang Yue, F. Claire Rind, Matthias S. Keil, Jorge Cuadri, & Richard Stafford. (2006). A bio-inspired visual collision detection mechanism for cars: Optimisation of a model of a locust neuron to a novel environment. Neurocomputing 69(13–15): 1591–1598.
|
Angel Sappa, David Geronimo, Fadi Dornaika, & Antonio Lopez. (2006). On-board camera extrinsic parameter estimation. EL - Electronics Letters, 42(13), 745–746.
Abstract: An efficient technique for real-time estimation of camera extrinsic parameters is presented. It is intended to be used on on-board vision systems for driving assistance applications. The proposed technique is based on the use of a commercial stereo vision system that does not need any visual feature extraction.
|
Xavier Otazu, & Oriol Pujol. (2006). Wavelet based approach to cluster analysis. Application on low dimensional data sets. PRL - Pattern Recognition Letters, 27(14), 1590–1605.
|
J. Nuñez, O. Fors, Xavier Otazu, Vicenç Pala, Roman Arbiol, & M.T. Merino. (2006). A Wavelet-Based Method for the Determination of the Relative Resolution Between Remotely Sensed Images. IEEE Transactions on Geoscience and Remote Sensing, 44(9): 2539–2548.
|
Angel Sappa, David Geronimo, Fadi Dornaika, & Antonio Lopez. (2006). Real Time Vehicle Pose Using On-Board Stereo Vision System. In International Conference on Image Analysis and Recognition (205–216).
Abstract: This paper presents a robust technique for a real time estimation of both camera’s position and orientation—referred as pose. A commercial stereo vision system is used. Unlike previous approaches, it can be used either for urban or highway scenarios. The proposed technique consists of two stages. Initially, a compact 2D representation of the original 3D data points is computed. Then, a RANSAC based least squares approach is used for fitting a plane to the road. At the same time,
relative camera’s position and orientation are computed. The proposed technique is intended to be used on a driving assistance scheme for applications such as obstacle or pedestrian detection. Experimental results on urban environments with different road geometries are presented.
|
V. Kober, Mikhail Mozerov, J. Alvarez-Borrego, & I.A. Ovseyevich. (2006). Adaptive Correlation Filters for Pattern Recognition. Pattern Recognition and Image Analysis, 425–431.
Abstract: Adaptive correlation filters based on synthetic discriminant functions (SDFs) for reliable pattern recognition are proposed. A given value of discrimination capability can be achieved by adapting a SDF filter to the input scene. This can be done by iterative training. Computer simulation results obtained with the proposed filters are compared with those of various correlation filters in terms of recognition performance.
Keywords: Pattern recognition, Correlation filters, A adaptive filters
|
Mikhail Mozerov, & V. Kober. (2006). Impulse Noise Removal with Gradient Adaptive Neighborhoods. Optical Engineering, 45: 67003.
|
E. Pastor, A. Agueda, Juan Andrade, M. Muñoz, Y. Perez, & E. Planas. (2006). Computing the rate of spread of linear flame fronts by thermal image processing. Fire Safety Journal, 41(8):569–579.
|
Jaume Amores. (2013). Multiple Instance Classification: review, taxonomy and comparative study. AI - Artificial Intelligence, 201, 81–105.
Abstract: Multiple Instance Learning (MIL) has become an important topic in the pattern recognition community, and many solutions to this problemhave been proposed until now. Despite this fact, there is a lack of comparative studies that shed light into the characteristics and behavior of the different methods. In this work we provide such an analysis focused on the classification task (i.e.,leaving out other learning tasks such as regression). In order to perform our study, we implemented
fourteen methods grouped into three different families. We analyze the performance of the approaches across a variety of well-known databases, and we also study their behavior in synthetic scenarios in order to highlight their characteristics. As a result of this analysis, we conclude that methods that extract global bag-level information show a clearly superior performance in general. In this sense, the analysis permits us to understand why some types of methods are more successful than others, and it permits us to establish guidelines in the design of new MIL
methods.
Keywords: Multi-instance learning; Codebook; Bag-of-Words
|
Anton Cervantes, Gemma Sanchez, Josep Llados, Agnes Borras, & Ana Rodriguez. (2006). Biometric Recognition Based on Line Shape Descriptors. In Lecture Notes in Computer Science (Vol. 3926, 346–357,). Springer Link.
Abstract: Abstract. In this paper we propose biometric descriptors inspired by shape signatures traditionally used in graphics recognition approaches. In particular several methods based on line shape descriptors used to iden- tify newborns from the biometric information of the ears are developed. The process steps are the following: image acquisition, ear segmentation, ear normalization, feature extraction and identification. Several shape signatures are defined from contour images. These are formulated in terms of zoning and contour crossings descriptors. Experimental results are presented to demonstrate the effectiveness of the used techniques.
|
Ernest Valveny, & Philippe Dosch. (2006). A general framework for the evaluation of symbol recognition methods. International Journal on Document Analysis and Recognition.
|
Philippe Dosch, & Ernest Valveny. (2006). Report on the Second Symbol Recognition Contest. In Graphics Recognition: Ten Years Review and Future Perspectives, W. Liu, J. Llados (Eds.), LNCS 3926: 381–397.
|
Alicia Fornes, Josep Llados, & Gemma Sanchez. (2006). Primitive Segmentation in Old Handwritten Music Scores. In Graphics Recognition: Ten Years Review and Future Perspectives, W. Liu, J. Llados (Eds.), LNCS 3926: 288–299.
|