Xavier Roca, Jordi Vitria, Maria Vanrell, & Juan J. Villanueva. (1999). Gaze control in a binocular robot systems. In 7th IEEE International Conference on Emerging Technologies and Factory Automation. Proceedings ETFA '99.
|
|
Maria Vanrell, Jordi Vitria, & Xavier Roca. (1993). A General Morphological Framework for Perceptual Texture Discrimination based on Granulometries. In Technical Workshop on Mathematical Morphology and its Applications to Signal Processing..
|
|
Ramon Baldrich, Maria Vanrell, Robert Benavente, & Anna Salvatella. (2003). Color Enhancement based on perceptual sharpening.
|
|
Shida Beigpour, & Joost Van de Weijer. (2011). Object Recoloring Based on Intrinsic Image Estimation. In 13th IEEE International Conference in Computer Vision (pp. 327–334).
Abstract: Object recoloring is one of the most popular photo-editing tasks. The problem of object recoloring is highly under-constrained, and existing recoloring methods limit their application to objects lit by a white illuminant. Application of these methods to real-world scenes lit by colored illuminants, multiple illuminants, or interreflections, results in unrealistic recoloring of objects. In this paper, we focus on the recoloring of single-colored objects presegmented from their background. The single-color constraint allows us to fit a more comprehensive physical model to the object. We demonstrate that this permits us to perform realistic recoloring of objects lit by non-white illuminants, and multiple illuminants. Moreover, the model allows for more realistic handling of illuminant alteration of the scene. Recoloring results captured by uncalibrated cameras demonstrate that the proposed framework obtains realistic recoloring for complex natural images. Furthermore we use the model to transfer color between objects and show that the results are more realistic than existing color transfer methods.
|
|
Shida Beigpour. (2013). Illumination and object reflectance modeling (Joost Van de Weijer, & Ernest Valveny, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: More realistic and accurate models of the scene illumination and object reflectance can greatly improve the quality of many computer vision and computer graphics tasks. Using such model, a more profound knowledge about the interaction of light with object surfaces can be established which proves crucial to a variety of computer vision applications. In the current work, we investigate the various existing approaches to illumination and reflectance modeling and form an analysis on their shortcomings in capturing the complexity of real-world scenes. Based on this analysis we propose improvements to different aspects of reflectance and illumination estimation in order to more realistically model the real-world scenes in the presence of complex lighting phenomena (i.e, multiple illuminants, interreflections and shadows). Moreover, we captured our own multi-illuminant dataset which consists of complex scenes and illumination conditions both outdoor and in laboratory conditions. In addition we investigate the use of synthetic data to facilitate the construction of datasets and improve the process of obtaining ground-truth information.
|
|
Robert Benavente, Gemma Sanchez, Ramon Baldrich, Maria Vanrell, & Josep Llados. (2000). Normalized colour segmentation for human appearance description. In 15 th International Conference on Pattern Recognition (Vol. 3, pp. 637–641).
|
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie, & Jean-Marc Ogier. (2013). Automatic text localisation in scanned comic books. In Proceedings of the International Conference on Computer Vision Theory and Applications (pp. 814–819).
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.
Keywords: Text localization; comics; text/graphic separation; complex background; unstructured document
|
|
David Berga, & Xavier Otazu. (2019). Computations of inhibition of return mechanisms by modulating V1 dynamics. In 28th Annual Computational Neuroscience Meeting.
Abstract: In this study we present a unifed model of the visual cortex for predicting visual attention using real image scenes. Feedforward mechanisms from RGC and LGN have been functionally modeled using wavelet filters at distinct orientations and scales for each chromatic pathway (Magno-, Parvo-, Konio-cellular) and polarity (ON-/OFF-center), by processing image components in the CIE Lab space. In V1, we process cortical interactions with an excitatory-inhibitory network of fring rate neurons, initially proposed by (Li, 1999), later extended by (Penacchio et al. 2013). Firing rates from model’s output have been used as predictors of neuronal activity to be projected in a map in superior colliculus (with WTA-like computations), determining locations of visual fxations. These locations will be considered as already visited areas for future saccades, therefore we integrated a spatiotemporal function of inhibition of return mechanisms (where LIP/FEF is responsible) to feed to the model with spatial memory for next saccades. Foveation mechanisms have been simulated with a cortical magnifcation function, which distort spatial viewing properties for each fxation. Results show lower prediction errors than with respect no IoR cases (Fig. 1), and it is functionally consistent with human psychophysical measurements. Our model follows a biologically-constrained architecture, previously shown to reproduce visual saliency (Berga & Otazu, 2018), visual discomfort (Penacchio et al. 2016), brightness (Penacchio et al. 2013) and chromatic induction (Cerda & Otazu, 2016).
|
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). An excitatory-inhibitory firing rate model accounts for brightness induction, colour induction and visual discomfort. In Barcelona Computational, Cognitive and Systems Neuroscience.
|
|
Ivet Rafegas, & Maria Vanrell. (2016). Colour Visual Coding in trained Deep Neural Networks. In European Conference on Visual Perception.
|
|
Yaxing Wang, L. Zhang, & Joost Van de Weijer. (2016). Ensembles of generative adversarial networks. In 30th Annual Conference on Neural Information Processing Systems Worshops.
Abstract: Ensembles are a popular way to improve results of discriminative CNNs. The
combination of several networks trained starting from different initializations
improves results significantly. In this paper we investigate the usage of ensembles of GANs. The specific nature of GANs opens up several new ways to construct ensembles. The first one is based on the fact that in the minimax game which is played to optimize the GAN objective the generator network keeps on changing even after the network can be considered optimal. As such ensembles of GANs can be constructed based on the same network initialization but just taking models which have different amount of iterations. These so-called self ensembles are much faster to train than traditional ensembles. The second method, called cascade GANs, redirects part of the training data which is badly modeled by the first GAN to another GAN. In experiments on the CIFAR10 dataset we show that ensembles of GANs obtain model probability distributions which better model the data distribution. In addition, we show that these improved results can be obtained at little additional computational cost.
|
|
Guim Perarnau, Joost Van de Weijer, Bogdan Raducanu, & Jose Manuel Alvarez. (2016). Invertible conditional gans for image editing. In 30th Annual Conference on Neural Information Processing Systems Worshops.
Abstract: Generative Adversarial Networks (GANs) have recently demonstrated to successfully approximate complex data distributions. A relevant extension of this model is conditional GANs (cGANs), where the introduction of external information allows to determine specific representations of the generated images. In this work, we evaluate encoders to inverse the mapping of a cGAN, i.e., mapping a real image into a latent space and a conditional representation. This allows, for example, to reconstruct and modify real images of faces conditioning on arbitrary attributes.
Additionally, we evaluate the design of cGANs. The combination of an encoder
with a cGAN, which we call Invertible cGAN (IcGAN), enables to re-generate real
images with deterministic complex modifications.
|
|
Lu Yu, Yongmei Cheng, & Joost Van de Weijer. (2018). Weakly Supervised Domain-Specific Color Naming Based on Attention. In 24th International Conference on Pattern Recognition (pp. 3019–3024).
Abstract: The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
|
|
Eduard Vazquez, & Maria Vanrell. (2008). Eines per al desenvolupament de competencies de enginyeria en un assignatura de Intel·ligencia Artificial.
|
|
Agata Lapedriza, Jaume Garcia, Ernest Valveny, Robert Benavente, Miquel Ferrer, & Gemma Sanchez. (2008). Una experiencia de aprenentatge basada en projectes en el ambit de la informatica.
|
|
Maria del Camp Davesa. (2011). Human action categorization in image sequences (Vol. 169). Master's thesis, , .
|
|
Ozan Caglayan, Walid Aransa, Yaxing Wang, Marc Masana, Mercedes Garcıa-Martinez, Fethi Bougares, et al. (2016). Does Multimodality Help Human and Machine for Translation and Image Captioning? In 1st conference on machine translation.
Abstract: This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate theusefulness of multimodal data for human machine translation and image description generation. Our systems obtained the best results for both tasks according to the automatic evaluation metrics BLEU and METEOR.
|
|
Arash Akbarinia, C. Alejandro Parraga, Marta Exposito, Bogdan Raducanu, & Xavier Otazu. (2017). Can biological solutions help computers detect symmetry? In 40th European Conference on Visual Perception.
|
|