|   | 
Details
   web
Records
Author Joan Codina-Filba; Sergio Escalera; Joan Escudero; Coen Antens; Pau Buch-Cardona; Mireia Farrus
Title Mobile eHealth Platform for Home Monitoring of Bipolar Disorder Type Conference Article
Year 2021 Publication 27th ACM International Conference on Multimedia Modeling Abbreviated Journal
Volume 12573 Issue Pages 330-341
Keywords
Abstract People suffering Bipolar Disorder (BD) experiment changes in mood status having depressive or manic episodes with normal periods in the middle. BD is a chronic disease with a high level of non-adherence to medication that needs a continuous monitoring of patients to detect when they relapse in an episode, so that physicians can take care of them. Here we present MoodRecord, an easy-to-use, non-intrusive, multilingual, robust and scalable platform suitable for home monitoring patients with BD, that allows physicians and relatives to track the patient state and get alarms when abnormalities occur.

MoodRecord takes advantage of the capabilities of smartphones as a communication and recording device to do a continuous monitoring of patients. It automatically records user activity, and asks the user to answer some questions or to record himself in video, according to a predefined plan designed by physicians. The video is analysed, recognising the mood status from images and bipolar assessment scores are extracted from speech parameters. The data obtained from the different sources are merged periodically to observe if a relapse may start and if so, raise the corresponding alarm. The application got a positive evaluation in a pilot with users from three different countries. During the pilot, the predictions of the voice and image modules showed a coherent correlation with the diagnosis performed by clinicians.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMM
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ CEE2021 Serial 3659
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera
Title Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD Type Journal
Year 2022 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal
Volume 13 Issue Pages 591–611
Keywords
Abstract One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ RKE2022a Serial 3660
Permanent link to this record
 

 
Author Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez
Title Logo Detection With No Priors Type Journal Article
Year 2021 Publication IEEE Access Abbreviated Journal ACCESS
Volume 9 Issue Pages 106998-107011
Keywords
Abstract In recent years, top referred methods on object detection like R-CNN have implemented this task as a combination of proposal region generation and supervised classification on the proposed bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has inherent limitations that make object detection a very complex and inefficient task in computational terms. Instead of considering this standard strategy, in this paper we enhance Detection Transformers (DETR) which tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on hand-designed priors.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ VGR2021 Serial 3664
Permanent link to this record
 

 
Author Diana Ramirez Cifuentes; Ana Freire; Ricardo Baeza Yates; Nadia Sanz Lamora; Aida Alvarez; Alexandre Gonzalez; Meritxell Lozano; Roger Llobet; Diego Velazquez; Josep M. Gonfaus; Jordi Gonzalez
Title Characterization of Anorexia Nervosa on Social Media: Textual, Visual, Relational, Behavioral, and Demographical Analysis Type Journal Article
Year 2021 Publication Journal of Medical Internet Research Abbreviated Journal JMIR
Volume 23 Issue 7 Pages e25925
Keywords
Abstract Background: Eating disorders are psychological conditions characterized by unhealthy eating habits. Anorexia nervosa (AN) is defined as the belief of being overweight despite being dangerously underweight. The psychological signs involve emotional and behavioral issues. There is evidence that signs and symptoms can manifest on social media, wherein both harmful and beneficial content is shared daily.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ RFB2021 Serial 3665
Permanent link to this record
 

 
Author Michael Teutsch; Angel Sappa; Riad I. Hammoud
Title Computer Vision in the Infrared Spectrum: Challenges and Approaches Type Book Whole
Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal
Volume 10 Issue 2 Pages 1-138
Keywords
Abstract Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1636392431 Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ TSH2021 Serial 3666
Permanent link to this record
 

 
Author F.Negin; Pau Rodriguez; M.Koperski; A.Kerboua; Jordi Gonzalez; J.Bourgeois; E.Chapoulie; P.Robert; F.Bremond
Title PRAXIS: Towards automatic cognitive assessment using gesture recognition Type Journal Article
Year 2018 Publication Expert Systems with Applications Abbreviated Journal ESWA
Volume 106 Issue Pages 21-35
Keywords
Abstract Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer’s disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults.

In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames.
We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ NRK2018 Serial 3669
Permanent link to this record
 

 
Author O.F.Ahmad; Y.Mori; M.Misawa; S.Kudo; J.T.Anderson; Jorge Bernal
Title Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method Type Journal Article
Year 2021 Publication Endoscopy Abbreviated Journal END
Volume 53 Issue 9 Pages 893-901
Keywords
Abstract BACKGROUND : Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. METHODS : An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. RESULTS : The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. CONCLUSIONS : This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ AMM2021 Serial 3670
Permanent link to this record
 

 
Author Yasuko Sugito; Trevor Canham; Javier Vazquez; Marcelo Bertalmio
Title A Study of Objective Quality Metrics for HLG-Based HDR/WCG Image Coding Type Journal
Year 2021 Publication SMPTE Motion Imaging Journal Abbreviated Journal SMPTE
Volume 130 Issue 4 Pages 53 - 65
Keywords
Abstract In this work, we study the suitability of high dynamic range, wide color gamut (HDR/WCG) objective quality metrics to assess the perceived deterioration of compressed images encoded using the hybrid log-gamma (HLG) method, which is the standard for HDR television. Several image quality metrics have been developed to deal specifically with HDR content, although in previous work we showed that the best results (i.e., better matches to the opinion of human expert observers) are obtained by an HDR metric that consists simply in applying a given standard dynamic range metric, called visual information fidelity (VIF), directly to HLG-encoded images. However, all these HDR metrics ignore the chroma components for their calculations, that is, they consider only the luminance channel. For this reason, in the current work, we conduct subjective evaluation experiments in a professional setting using compressed HDR/WCG images encoded with HLG and analyze the ability of the best HDR metric to detect perceivable distortions in the chroma components, as well as the suitability of popular color metrics (including ΔITPR , which supports parameters for HLG) to correlate with the opinion scores. Our first contribution is to show that there is a need to consider the chroma components in HDR metrics, as there are color distortions that subjects perceive but that the best HDR metric fails to detect. Our second contribution is the surprising result that VIF, which utilizes only the luminance channel, correlates much better with the subjective evaluation scores than the metrics investigated that do consider the color components.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number SCV2021 Serial 3671
Permanent link to this record
 

 
Author Pau Riba; Sounak Dey; Ali Furkan Biten; Josep Llados
Title Localizing Infinity-shaped fishes: Sketch-guided object localization in the wild Type Miscellaneous
Year 2021 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This work investigates the problem of sketch-guided object localization (SGOL), where human sketches are used as queries to conduct the object localization in natural images. In this cross-modal setting, we first contribute with a tough-to-beat baseline that without any specific SGOL training is able to outperform the previous works on a fixed set of classes. The baseline is useful to analyze the performance of SGOL approaches based on available simple yet powerful methods. We advance prior arts by proposing a sketch-conditioned DETR (DEtection TRansformer) architecture which avoids a hard classification and alleviates the domain gap between sketches and images to localize object instances. Although the main goal of SGOL is focused on object detection, we explored its natural extension to sketch-guided instance segmentation. This novel task allows to move towards identifying the objects at pixel level, which is of key importance in several applications. We experimentally demonstrate that our model and its variants significantly advance over previous state-of-the-art results. All training and testing code of our model will be released to facilitate future researchhttps://github.com/priba/sgol_wild.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ RDB2021 Serial 3674
Permanent link to this record
 

 
Author Fei Yang; Yaxing Wang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov
Title A Novel Framework for Image-to-image Translation and Image Compression Type Journal Article
Year 2022 Publication Neurocomputing Abbreviated Journal NEUCOM
Volume 508 Issue Pages 58-70
Keywords
Abstract Data-driven paradigms using machine learning are becoming ubiquitous in image processing and communications. In particular, image-to-image (I2I) translation is a generic and widely used approach to image processing problems, such as image synthesis, style transfer, and image restoration. At the same time, neural image compression has emerged as a data-driven alternative to traditional coding approaches in visual communications. In this paper, we study the combination of these two paradigms into a joint I2I compression and translation framework, focusing on multi-domain image synthesis. We first propose distributed I2I translation by integrating quantization and entropy coding into an I2I translation framework (i.e. I2Icodec). In practice, the image compression functionality (i.e. autoencoding) is also desirable, requiring to deploy alongside I2Icodec a regular image codec. Thus, we further propose a unified framework that allows both translation and autoencoding capabilities in a single codec. Adaptive residual blocks conditioned on the translation/compression mode provide flexible adaptation to the desired functionality. The experiments show promising results in both I2I translation and image compression using a single model.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ YWH2022 Serial 3679
Permanent link to this record
 

 
Author AN Ruchai; VI Kober; KA Dorofeev; VN Karnaukhov; Mikhail Mozerov
Title Classification of breast abnormalities using a deep convolutional neural network and transfer learning Type Journal Article
Year 2021 Publication Journal of Communications Technology and Electronics Abbreviated Journal
Volume 66 Issue 6 Pages 778–783
Keywords
Abstract A new algorithm for classification of breast pathologies in digital mammography using a convolutional neural network and transfer learning is proposed. The following pretrained neural networks were chosen: MobileNetV2, InceptionResNetV2, Xception, and ResNetV2. All mammographic images were pre-processed to improve classification reliability. Transfer training was carried out using additional data augmentation and fine-tuning. The performance of the proposed algorithm for classification of breast pathologies in terms of accuracy on real data is discussed and compared with that of state-of-the-art algorithms on the available MIAS database.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ RKD2022 Serial 3680
Permanent link to this record
 

 
Author Alex Gomez-Villa; Adrian Martin; Javier Vazquez; Marcelo Bertalmio; Jesus Malo
Title On the synthesis of visual illusions using deep generative models Type Journal Article
Year 2022 Publication Journal of Vision Abbreviated Journal JOV
Volume 22(8) Issue 2 Pages 1-18
Keywords
Abstract Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.161; 611.007 Approved no
Call Number Admin @ si @ GMV2022 Serial 3682
Permanent link to this record
 

 
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio
Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
Year 2022 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 31 Issue Pages 5163 - 5177
Keywords Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements
Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 600.161; 611.007 Approved no
Call Number Admin @ si @ SVG2022 Serial 3683
Permanent link to this record
 

 
Author Idoia Ruiz; Joan Serrat
Title Hierarchical Novelty Detection for Traffic Sign Recognition Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 12 Pages 4389
Keywords Novelty detection; hierarchical classification; deep learning; traffic sign recognition; autonomous driving; computer vision
Abstract Recent works have made significant progress in novelty detection, i.e., the problem of detecting samples of novel classes, never seen during training, while classifying those that belong to known classes. However, the only information this task provides about novel samples is that they are unknown. In this work, we leverage hierarchical taxonomies of classes to provide informative outputs for samples of novel classes. We predict their closest class in the taxonomy, i.e., its parent class. We address this problem, known as hierarchical novelty detection, by proposing a novel loss, namely Hierarchical Cosine Loss that is designed to learn class prototypes along with an embedding of discriminative features consistent with the taxonomy. We apply it to traffic sign recognition, where we predict the parent class semantics for new types of traffic signs. Our model beats state-of-the art approaches on two large scale traffic sign benchmarks, Mapillary Traffic Sign Dataset (MTSD) and Tsinghua-Tencent 100K (TT100K), and performs similarly on natural images benchmarks (AWA2, CUB). For TT100K and MTSD, our approach is able to detect novel samples at the correct nodes of the hierarchy with 81% and 36% of accuracy, respectively, at 80% known class accuracy.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.154 Approved no
Call Number Admin @ si @ RuS2022 Serial 3684
Permanent link to this record
 

 
Author Xavier Otazu; Xim Cerda-Company
Title The contribution of luminance and chromatic channels to color assimilation Type Journal Article
Year 2022 Publication Journal of Vision Abbreviated Journal JOV
Volume 22(6) Issue 10 Pages 1-15
Keywords
Abstract Color induction is the phenomenon where the physical and the perceived colors of an object differ owing to the color distribution and the spatial configuration of the surrounding objects. Previous works studying this phenomenon on the lsY MacLeod–Boynton color space, show that color assimilation is present only when the magnocellular pathway (i.e., the Y axis) is activated (i.e., when there are luminance differences). Concretely, the authors showed that the effect is mainly induced by the koniocellular pathway (s axis), but not by the parvocellular pathway (l axis), suggesting that when magnocellular pathway is activated it inhibits the koniocellular pathway. In the present work, we study whether parvo-, konio-, and magnocellular pathways may influence on each other through the color induction effect. Our results show that color assimilation does not depend on a chromatic–chromatic interaction, and that chromatic assimilation is driven by the interaction between luminance and chromatic channels (mainly the magno- and the koniocellular pathways). Our results also show that chromatic induction is greatly decreased when all three visual pathways are simultaneously activated, and that chromatic pathways could influence each other through the magnocellular (luminance) pathway. In addition, we observe that chromatic channels can influence the luminance channel, hence inducing a small brightness induction. All these results show that color induction is a highly complex process where interactions between the several visual pathways are yet unknown and should be studied in greater detail.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Neurobit; 600.128; 600.120; 600.158 Approved no
Call Number Admin @ si @ OtC2022 Serial 3685
Permanent link to this record