toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Claudia Greco; Carmela Buono; Pau Buch-Cardona; Gennaro Cordasco; Sergio Escalera; Anna Esposito; Anais Fernandez; Daria Kyslitska; Maria Stylianou Kornes; Cristina Palmero; Jofre Tenorio Laranga; Anna Torp Johansen; Maria Ines Torres edit   pdf
doi  openurl
  Title Emotional Features of Interactions With Empathic Agents Type Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2168-2176  
  Keywords  
  Abstract The current study is part of the EMPATHIC project, whose aim is to develop an Empathic Virtual Coach (VC) capable of promoting healthy and independent aging. To this end, the VC needs to be capable of perceiving the emotional states of users and adjusting its behaviour during the interactions according to what the users are experiencing in terms of emotions and comfort. Thus, the present work focuses on some sessions where elderly users of three different countries interact with a simulated system. Audio and video information extracted from these sessions were examined by external observers to assess participants' emotional experience with the EMPATHIC-VC in terms of categorical and dimensional assessment of emotions. Analyses were conducted on the emotional labels assigned by the external observers while participants were engaged in two different scenarios: a generic one, where the interaction was carried out with no intention to discuss a specific topic, and a nutrition one, aimed to accomplish a conversation on users' nutritional habits. Results of analyses performed on both audio and video data revealed that the EMPATHIC coach did not elicit negative feelings in the users. Indeed, users from all countries have shown relaxed and positive behavior when interacting with the simulated VC during both scenarios. Overall, the EMPATHIC-VC was capable to offer an enjoyable experience without eliciting negative feelings in the users. This supports the hypothesis that an Empathic Virtual Coach capable of considering users' expectations and emotional states could support elderly people in daily life activities and help them to remain independent.  
  Address (up) VIRTUAL; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ GBB2021 Serial 3647  
Permanent link to this record
 

 
Author David Curto; Albert Clapes; Javier Selva; Sorina Smeureanu; Julio C. S. Jacques Junior; David Gallardo-Pujol; Georgina Guilera; David Leiva; Thomas B. Moeslund; Sergio Escalera; Cristina Palmero edit   pdf
doi  openurl
  Title Dyadformer: A Multi-Modal Transformer for Long-Range Modeling of Dyadic Interactions Type Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2177-2188  
  Keywords  
  Abstract Personality computing has become an emerging topic in computer vision, due to the wide range of applications it can be used for. However, most works on the topic have focused on analyzing the individual, even when applied to interaction scenarios, and for short periods of time. To address these limitations, we present the Dyadformer, a novel multi-modal multi-subject Transformer architecture to model individual and interpersonal features in dyadic interactions using variable time windows, thus allowing the capture of long-term interdependencies. Our proposed cross-subject layer allows the network to explicitly model interactions among subjects through attentional operations. This proof-of-concept approach shows how multi-modality and joint modeling of both interactants for longer periods of time helps to predict individual attributes. With Dyadformer, we improve state-of-the-art self-reported personality inference results on individual subjects on the UDIVA v0.5 dataset.  
  Address (up) Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CCS2021 Serial 3648  
Permanent link to this record
 

 
Author Neelu Madan; Arya Farkhondeh; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit   pdf
openurl 
  Title Temporal Cues From Socially Unacceptable Trajectories for Anomaly Detection Type Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2150-2158  
  Keywords  
  Abstract State-of-the-Art (SoTA) deep learning-based approaches to detect anomalies in surveillance videos utilize limited temporal information, including basic information from motion, e.g., optical flow computed between consecutive frames. In this paper, we compliment the SoTA methods by including long-range dependencies from trajectories for anomaly detection. To achieve that, we first created trajectories by running a tracker on two SoTA datasets, namely Avenue and Shanghai-Tech. We propose a prediction-based anomaly detection method using trajectories based on Social GANs, also called in this paper as temporal-based anomaly detection. Then, we hypothesize that late fusion of the result of this temporal-based anomaly detection system with spatial-based anomaly detection systems produces SoTA results. We verify this hypothesis on two spatial-based anomaly detection systems. We show that both cases produce results better than baseline spatial-based systems, indicating the usefulness of the temporal information coming from the trajectories for anomaly detection. We observe that the proposed approach depicts the maximum improvement in micro-level Area-Under-the-Curve (AUC) by 4.1% on CUHK Avenue and 3.4% on Shanghai-Tech over one of the baseline method. We also show a high performance on cross-data evaluation, where we learn the weights to combine spatial and temporal information on Shanghai-Tech and perform evaluation on CUHK Avenue and vice-versa.  
  Address (up) Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MFN2021 Serial 3649  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13017 Issue Pages 131–143  
  Keywords  
  Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.  
  Address (up) Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ VSC2021 Serial 3667  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture Type Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13018 Issue Pages 178–190  
  Keywords  
  Abstract This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.  
  Address (up) Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2021 Serial 3668  
Permanent link to this record
 

 
Author Shun Yao; Fei Yang; Yongmei Cheng; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title 3D Shapes Local Geometry Codes Learning with SDF Type Conference Article
  Year 2021 Publication International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2110-2117  
  Keywords  
  Abstract A signed distance function (SDF) as the 3D shape description is one of the most effective approaches to represent 3D geometry for rendering and reconstruction. Our work is inspired by the state-of-the-art method DeepSDF [17] that learns and analyzes the 3D shape as the iso-surface of its shell and this method has shown promising results especially in the 3D shape reconstruction and compression domain. In this paper, we consider the degeneration problem of reconstruction coming from the capacity decrease of the DeepSDF model, which approximates the SDF with a neural network and a single latent code. We propose Local Geometry Code Learning (LGCL), a model that improves the original DeepSDF results by learning from a local shape geometry of the full 3D shape. We add an extra graph neural network to split the single transmittable latent code into a set of local latent codes distributed on the 3D shape. Mentioned latent codes are used to approximate the SDF in their local regions, which will alleviate the complexity of the approximation compared to the original DeepSDF. Furthermore, we introduce a new geometric loss function to facilitate the training of these local latent codes. Note that other local shape adjusting methods use the 3D voxel representation, which in turn is a problem highly difficult to solve or even is insolvable. In contrast, our architecture is based on graph processing implicitly and performs the learning regression process directly in the latent code space, thus make the proposed architecture more flexible and also simple for realization. Our experiments on 3D shape reconstruction demonstrate that our LGCL method can keep more details with a significantly smaller size of the SDF decoder and outperforms considerably the original DeepSDF method under the most important quantitative metrics.  
  Address (up) VIRTUAL; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ YYC2021 Serial 3681  
Permanent link to this record
 

 
Author Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi edit   pdf
openurl 
  Title Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images Type Conference Article
  Year 2021 Publication 4th International Conference on Historical Cryptology Abbreviated Journal  
  Volume Issue Pages 34-37  
  Keywords  
  Abstract Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.  
  Address (up) Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HistoCrypt  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ CSF2021 Serial 3617  
Permanent link to this record
 

 
Author Pau Torras; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes edit  url
openurl 
  Title A Transcription Is All You Need: Learning to Align through Attention Type Conference Article
  Year 2021 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume 12916 Issue Pages 141–146  
  Keywords  
  Abstract Historical ciphered manuscripts are a type of document where graphical symbols are used to encrypt their content instead of regular text. Nowadays, expert transcriptions can be found in libraries alongside the corresponding manuscript images. However, those transcriptions are not aligned, so these are barely usable for training deep learning-based recognition methods. To solve this issue, we propose a method to align each symbol in the transcript of an image with its visual representation by using an attention-based Sequence to Sequence (Seq2Seq) model. The core idea is that, by learning to recognise symbols sequence within a cipher line image, the model also identifies their position implicitly through an attention mechanism. Thus, the resulting symbol segmentation can be later used for training algorithms. The experimental evaluation shows that this method is promising, especially taking into account the small size of the cipher dataset.  
  Address (up) Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ TSC2021 Serial 3619  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: