|   | 
Details
   web
Records
Author Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar
Title Understanding Video Scenes Through Text: Insights from Text-Based Video Question Answering Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Researchers have extensively studied the field of vision and language, discovering that both visual and textual content is crucial for understanding scenes effectively. Particularly, comprehending text in videos holds great significance, requiring both scene text understanding and temporal reasoning. This paper focuses on exploring two recently introduced datasets, NewsVideoQA and M4-ViteVQA, which aim to address video question answering based on textual content. The NewsVideoQA dataset contains question-answer pairs related to the text in news videos, while M4- ViteVQA comprises question-answer pairs from diverse categories like vlogging, traveling, and shopping. We provide an analysis of the formulation of these datasets on various levels, exploring the degree of visual understanding and multi-frame comprehension required for answering the questions. Additionally, the study includes experimentation with BERT-QA, a text-only model, which demonstrates comparable performance to the original methods on both datasets, indicating the shortcomings in the formulation of these datasets. Furthermore, we also look into the domain adaptation aspect by examining the effectiveness of training on M4-ViteVQA and evaluating on NewsVideoQA and vice-versa, thereby shedding light on the challenges and potential benefits of out-of-domain training.
Address (up) Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes DAG Approved no
Call Number Admin @ si @ JMK2023 Serial 3946
Permanent link to this record
 

 
Author Dawid Rymarczyk; Joost van de Weijer; Bartosz Zielinski; Bartlomiej Twardowski
Title ICICLE: Interpretable Class Incremental Continual Learning. Dawid Rymarczyk Type Conference Article
Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 1887-1898
Keywords
Abstract Continual learning enables incremental learning of new tasks without forgetting those previously learned, resulting in positive knowledge transfer that can enhance performance on both new and old tasks. However, continual learning poses new challenges for interpretability, as the rationale behind model predictions may change over time, leading to interpretability concept drift. We address this problem by proposing Interpretable Class-InCremental LEarning (ICICLE), an exemplar-free approach that adopts a prototypical part-based approach. It consists of three crucial novelties: interpretability regularization that distills previously learned concepts while preserving user-friendly positive reasoning; proximity-based prototype initialization strategy dedicated to the fine-grained setting; and task-recency bias compensation devoted to prototypical parts. Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning when applied to concept-based models.
Address (up) Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP Approved no
Call Number Admin @ si @ RWZ2023 Serial 3947
Permanent link to this record
 

 
Author Jordy Van Landeghem; Ruben Tito; Lukasz Borchmann; Michal Pietruszka; Pawel Joziak; Rafal Powalski; Dawid Jurkiewicz; Mickael Coustaty; Bertrand Anckaert; Ernest Valveny; Matthew Blaschko; Sien Moens; Tomasz Stanislawek
Title Document Understanding Dataset and Evaluation (DUDE) Type Conference Article
Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 19528-19540
Keywords
Abstract We call on the Document AI (DocAI) community to re-evaluate current methodologies and embrace the challenge of creating more practically-oriented benchmarks. Document Understanding Dataset and Evaluation (DUDE) seeks to remediate the halted research progress in understanding visually-rich documents (VRDs). We present a new dataset with novelties related to types of questions, answers, and document layouts based on multi-industry, multi-domain, and multi-page VRDs of various origins and dates. Moreover, we are pushing the boundaries of current methods by creating multi-task and multi-domain evaluation setups that more accurately simulate real-world situations where powerful generalization and adaptation under low-resource settings are desired. DUDE aims to set a new standard as a more practical, long-standing benchmark for the community, and we hope that it will lead to future extensions and contributions that address real-world challenges. Finally, our work illustrates the importance of finding more efficient ways to model language, images, and layout in DocAI.
Address (up) Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes DAG Approved no
Call Number Admin @ si @ LTB2023 Serial 3948
Permanent link to this record
 

 
Author Yuyang Liu; Yang Cong; Dipam Goswami; Xialei Liu; Joost Van de Weijer
Title Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection Type Conference Article
Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 11367-11377
Keywords
Abstract In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classification, image replay has not been successfully applied to incremental object detection (IOD). In this paper, we identify the overlooked problem of foreground shift as the main reason for this. Foreground shift only occurs when replaying images of previous tasks and refers to the fact that their background might contain foreground objects of the current task. To overcome this problem, a novel and efficient Augmented Box Replay (ABR) method is developed that only stores and replays foreground objects and thereby circumvents the foreground shift problem. In addition, we propose an innovative Attentive RoI Distillation loss that uses spatial attention from region-of-interest (RoI) features to constrain current model to focus on the most important information from old model. ABR significantly reduces forgetting of previous classes while maintaining high plasticity in current classes. Moreover, it considerably reduces the storage requirements when compared to standard image replay. Comprehensive experiments on Pascal-VOC and COCO datasets support the state-of-the-art performance of our model.
Address (up) Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP Approved no
Call Number Admin @ si @ LCG2023 Serial 3949
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer
Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages 3444-3454
Keywords
Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.
Address (up) Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes LAMP; MILAB Approved no
Call Number Admin @ si @ ARR2023 Serial 3974
Permanent link to this record
 

 
Author Danna Xue; Luis Herranz; Javier Vazquez; Yanning Zhang
Title Burst Perception-Distortion Tradeoff: Analysis and Evaluation Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Burst image restoration attempts to effectively utilize the complementary cues appearing in sequential images to produce a high-quality image. Most current methods use all the available images to obtain the reconstructed image. However, using more images for burst restoration is not always the best option regarding reconstruction quality and efficiency, as the images acquired by handheld imaging devices suffer from degradation and misalignment caused by the camera noise and shake. In this paper, we extend the perception-distortion tradeoff theory by introducing multiple-frame information. We propose the area of the unattainable region as a new metric for perception-distortion tradeoff evaluation and comparison. Based on this metric, we analyse the performance of burst restoration from the perspective of the perception-distortion tradeoff under both aligned bursts and misaligned bursts situations. Our analysis reveals the importance of inter-frame alignment for burst restoration and shows that the optimal burst length for the restoration model depends both on the degree of degradation and misalignment.
Address (up) Rodhes Islands; Greece; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes CIC; MACO Approved no
Call Number Admin @ si @ XHV2023 Serial 3909
Permanent link to this record
 

 
Author Mingyi Yang; Luis Herranz; Fei Yang; Luka Murn; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang; Marta Mrak
Title Semantic Preprocessor for Image Compression for Machines Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.
Address (up) Rodhes Islands; Greece; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes MACO; LAMP Approved no
Call Number Admin @ si @ YHY2023 Serial 3912
Permanent link to this record
 

 
Author Lei Kang; Lichao Zhang; Dazhi Jiang
Title Learning Robust Self-Attention Features for Speech Emotion Recognition with Label-Adaptive Mixup Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Speech Emotion Recognition (SER) is to recognize human emotions in a natural verbal interaction scenario with machines, which is considered as a challenging problem due to the ambiguous human emotions. Despite the recent progress in SER, state-of-the-art models struggle to achieve a satisfactory performance. We propose a self-attention based method with combined use of label-adaptive mixup and center loss. By adapting label probabilities in mixup and fitting center loss to the mixup training scheme, our proposed method achieves a superior performance to the state-of-the-art methods.
Address (up) Rodhes Islands; Greece; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes LAMP Approved no
Call Number Admin @ si @ KZJ2023 Serial 3984
Permanent link to this record
 

 
Author Francesc Net; Marc Folia; Pep Casals; Lluis Gomez
Title Transductive Learning for Near-Duplicate Image Detection in Scanned Photo Collections Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14191 Issue Pages 3-17
Keywords Image deduplication; Near-duplicate images detection; Transductive Learning; Photographic Archives; Deep Learning
Abstract This paper presents a comparative study of near-duplicate image detection techniques in a real-world use case scenario, where a document management company is commissioned to manually annotate a collection of scanned photographs. Detecting duplicate and near-duplicate photographs can reduce the time spent on manual annotation by archivists. This real use case differs from laboratory settings as the deployment dataset is available in advance, allowing the use of transductive learning. We propose a transductive learning approach that leverages state-of-the-art deep learning architectures such as convolutional neural networks (CNNs) and Vision Transformers (ViTs). Our approach involves pre-training a deep neural network on a large dataset and then fine-tuning the network on the unlabeled target collection with self-supervised learning. The results show that the proposed approach outperforms the baseline methods in the task of near-duplicate image detection in the UKBench and an in-house private dataset.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ NFC2023 Serial 3859
Permanent link to this record
 

 
Author Ayan Banerjee; Sanket Biswas; Josep Llados; Umapada Pal
Title SwinDocSegmenter: An End-to-End Unified Domain Adaptive Transformer for Document Instance Segmentation Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14187 Issue Pages 307–325
Keywords
Abstract Instance-level segmentation of documents consists in assigning a class-aware and instance-aware label to each pixel of the image. It is a key step in document parsing for their understanding. In this paper, we present a unified transformer encoder-decoder architecture for en-to-end instance segmentation of complex layouts in document images. The method adapts a contrastive training with a mixed query selection for anchor initialization in the decoder. Later on, it performs a dot product between the obtained query embeddings and the pixel embedding map (coming from the encoder) for semantic reasoning. Extensive experimentation on competitive benchmarks like PubLayNet, PRIMA, Historical Japanese (HJ), and TableBank demonstrate that our model with SwinL backbone achieves better segmentation performance than the existing state-of-the-art approaches with the average precision of 93.72, 54.39, 84.65 and 98.04 respectively under one billion parameters. The code is made publicly available at: github.com/ayanban011/SwinDocSegmenter .
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ BBL2023 Serial 3893
Permanent link to this record
 

 
Author Wenwen Yu; Chengquan Zhang; Haoyu Cao; Wei Hua; Bohan Li; Huang Chen; Mingyu Liu; Mingrui Chen; Jianfeng Kuang; Mengjun Cheng; Yuning Du; Shikun Feng; Xiaoguang Hu; Pengyuan Lyu; Kun Yao; Yuechen Yu; Yuliang Liu; Wanxiang Che; Errui Ding; Cheng-Lin Liu; Jiebo Luo; Shuicheng Yan; Min Zhang; Dimosthenis Karatzas; Xing Sun; Jingdong Wang; Xiang Bai
Title ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich Document Images Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14188 Issue Pages 536–552
Keywords
Abstract Structured text extraction is one of the most valuable and challenging application directions in the field of Document AI. However, the scenarios of past benchmarks are limited, and the corresponding evaluation protocols usually focus on the submodules of the structured text extraction scheme. In order to eliminate these problems, we organized the ICDAR 2023 competition on Structured text extraction from Visually-Rich Document images (SVRD). We set up two tracks for SVRD including Track 1: HUST-CELL and Track 2: Baidu-FEST, where HUST-CELL aims to evaluate the end-to-end performance of Complex Entity Linking and Labeling, and Baidu-FEST focuses on evaluating the performance and generalization of Zero-shot/Few-shot Structured Text extraction from an end-to-end perspective. Compared to the current document benchmarks, our two tracks of competition benchmark enriches the scenarios greatly and contains more than 50 types of visually-rich document images (mainly from the actual enterprise applications). The competition opened on 30th December, 2022 and closed on 24th March, 2023. There are 35 participants and 91 valid submissions received for Track 1, and 15 participants and 26 valid submissions received for Track 2. In this report we will presents the motivation, competition datasets, task definition, evaluation protocol, and submission summaries. According to the performance of the submissions, we believe there is still a large gap on the expected information extraction performance for complex and zero-shot scenarios. It is hoped that this competition will attract many researchers in the field of CV and NLP, and bring some new thoughts to the field of Document AI.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ YZC2023 Serial 3896
Permanent link to this record
 

 
Author Wenwen Yu; Mingyu Liu; Mingrui Chen; Ning Lu; Yinlong We; Yuliang Liu; Dimosthenis Karatzas; Xiang Bai
Title ICDAR 2023 Competition on Reading the Seal Title Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14188 Issue Pages 522–535
Keywords
Abstract Reading seal title text is a challenging task due to the variable shapes of seals, curved text, background noise, and overlapped text. However, this important element is commonly found in official and financial scenarios, and has not received the attention it deserves in the field of OCR technology. To promote research in this area, we organized ICDAR 2023 competition on reading the seal title (ReST), which included two tasks: seal title text detection (Task 1) and end-to-end seal title recognition (Task 2). We constructed a dataset of 10,000 real seal data, covering the most common classes of seals, and labeled all seal title texts with text polygons and text contents. The competition opened on 30th December, 2022 and closed on 20th March, 2023. The competition attracted 53 participants and received 135 submissions from academia and industry, including 28 participants and 72 submissions for Task 1, and 25 participants and 63 submissions for Task 2, which demonstrated significant interest in this challenging task. In this report, we present an overview of the competition, including the organization, challenges, and results. We describe the dataset and tasks, and summarize the submissions and evaluation results. The results show that significant progress has been made in the field of seal title text reading, and we hope that this competition will inspire further research and development in this important area of OCR technology.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ YLC2023 Serial 3897
Permanent link to this record
 

 
Author Weijia Wu; Yuzhong Zhao; Zhuang Li; Jiahong Li; Mike Zheng Shou; Umapada Pal; Dimosthenis Karatzas; Xiang Bai
Title ICDAR 2023 Competition on Video Text Reading for Dense and Small Text Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14188 Issue Pages 405–419
Keywords Video Text Spotting; Small Text; Text Tracking; Dense Text
Abstract Recently, video text detection, tracking and recognition in natural scenes are becoming very popular in the computer vision community. However, most existing algorithms and benchmarks focus on common text cases (e.g., normal size, density) and single scenario, while ignore extreme video texts challenges, i.e., dense and small text in various scenarios. In this competition report, we establish a video text reading benchmark, named DSText, which focuses on dense and small text reading challenge in the video with various scenarios. Compared with the previous datasets, the proposed dataset mainly include three new challenges: 1) Dense video texts, new challenge for video text spotter. 2) High-proportioned small texts. 3) Various new scenarios, e.g., ‘Game’, ‘Sports’, etc. The proposed DSText includes 100 video clips from 12 open scenarios, supporting two tasks (i.e., video text tracking (Task 1) and end-to-end video text spotting (Task2)). During the competition period (opened on 15th February, 2023 and closed on 20th March, 2023), a total of 24 teams participated in the three proposed tasks with around 30 valid submissions, respectively. In this article, we describe detailed statistical information of the dataset, tasks, evaluation protocols and the results summaries of the ICDAR 2023 on DSText competition. Moreover, we hope the benchmark will promise the video text research in the community.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ WZL2023 Serial 3898
Permanent link to this record
 

 
Author Stepan Simsa; Milan Sulc; Michal Uricar; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas
Title DocILE Benchmark for Document Information Localization and Extraction Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14188 Issue Pages 147–166
Keywords Document AI; Information Extraction; Line Item Recognition; Business Documents; Intelligent Document Processing
Abstract This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ SSU2023 Serial 3903
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar
Title ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition Type Conference Article
Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume 14188 Issue Pages 577–586
Keywords
Abstract In this report, we present the final results of the ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. The RoadText challenge is based on the RoadText-1K dataset and aims to assess and enhance current methods for scene text detection, recognition, and tracking in videos. The RoadText-1K dataset contains 1000 dash cam videos with annotations for text bounding boxes and transcriptions in every frame. The competition features an end-to-end task, requiring systems to accurately detect, track, and recognize text in dash cam videos. The paper presents a comprehensive review of the submitted methods along with a detailed analysis of the results obtained by the methods. The analysis provides valuable insights into the current capabilities and limitations of video text detection, tracking, and recognition systems for dashcam videos.
Address (up) San Jose; CA; USA; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG Approved no
Call Number Admin @ si @ TMG2023 Serial 3905
Permanent link to this record