|   | 
Details
   web
Records
Author J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier; Josep Llados
Title A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 621-625
Keywords
Abstract This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.084; 600.061; 601.223; 600.077 Approved no
Call Number Admin @ si @ CRO2015b Serial 2685
Permanent link to this record
 

 
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas
Title Sparse Radial Sampling LBP for Writer Identification Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 716-720
Keywords
Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ NBL2015 Serial 2692
Permanent link to this record
 

 
Author Suman Ghosh; Lluis Gomez; Dimosthenis Karatzas; Ernest Valveny
Title Efficient indexing for Query By String text retrieval Type Conference Article
Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal
Volume Issue Pages 1236 - 1240
Keywords
Abstract This paper deals with Query By String word spotting in scene images. A hierarchical text segmentation algorithm based on text specific selective search is used to find text regions. These regions are indexed per character n-grams present in the text region. An attribute representation based on Pyramidal Histogram of Characters (PHOC) is used to compare text regions with the query text. For generation of the index a similar attribute space based Pyramidal Histogram of character n-grams is used. These attribute models are learned using linear SVMs over the Fisher Vector [1] representation of the images along with the PHOC labels of the corresponding strings.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CBDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ GGK2015 Serial 2693
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny
Title Query by String word spotting based on character bi-gram indexing Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 881-885
Keywords
Abstract In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ GhV2015a Serial 2715
Permanent link to this record
 

 
Author R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier
Title A Conditional Random Field model for font forgery detection Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 576 - 580
Keywords
Abstract Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ BRG2015 Serial 2725
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados; David Fernandez; Cristina Cañero
Title Use case visual Bag-of-Words techniques for camera based identity document classification Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 721 - 725
Keywords
Abstract Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077; 600.061; Approved no
Call Number Admin @ si @ HRL2015a Serial 2726
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados
Title Attributed Graph Grammar for floor plan analysis Type Conference Article
Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal
Volume Issue Pages 726 - 730
Keywords
Abstract In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.077; 600.061 Approved no
Call Number Admin @ si @ HRL2015b Serial 2727
Permanent link to this record
 

 
Author Pau Riba; Alicia Fornes; Josep Llados
Title Towards the Alignment of Handwritten Music Scores Type Conference Article
Year 2015 Publication 11th IAPR International Workshop on Graphics Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract It is very common to find different versions of the same music work in archives of Opera Theaters. These differences correspond to modifications and annotations from the musicians. From the musicologist point of view, these variations are very interesting and deserve study. This paper explores the alignment of music scores as a tool for automatically detecting the passages that contain such differences. Given the difficulties in the recognition of handwritten music scores, our goal is to align the music scores and at the same time, avoid the recognition of music elements as much as possible. After removing the staff lines, braces and ties, the bar lines are detected. Then, the bar units are described as a whole using the Blurred Shape Model. The bar units alignment is performed by using Dynamic Time Warping. The analysis of the alignment path is used to detect the variations in the music scores. The method has been evaluated on a subset of the CVC-MUSCIMA dataset, showing encouraging results.
Address (up) Nancy; France; August 2015
Corporate Author Thesis
Publisher Springer International Publishing Place of Publication Editor Bart Lamiroy; Rafael Dueire Lins
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-319-52158-9 Medium
Area Expedition Conference GREC
Notes DAG Approved no
Call Number Admin @ si @ Serial 2874
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate
Title Multi-modal Pedestrian Detection Type Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pedestrian detection continues to be an extremely challenging problem in real scenarios, in which situations like illumination changes, noisy images, unexpected objects, uncontrolled scenarios and variant appearance of objects occur constantly. All these problems force the development of more robust detectors for relevant applications like vision-based autonomous vehicles, intelligent surveillance, and pedestrian tracking for behavior analysis. Most reliable vision-based pedestrian detectors base their decision on features extracted using a single sensor capturing complementary features, e.g., appearance, and texture. These features usually are extracted from the current frame, ignoring temporal information, or including it in a post process step e.g., tracking or temporal coherence. Taking into account these issues we formulate the following question: can we generate more robust pedestrian detectors by introducing new information sources in the feature extraction step?
In order to answer this question we develop different approaches for introducing new information sources to well-known pedestrian detectors. We start by the inclusion of temporal information following the Stacked Sequential Learning (SSL) paradigm which suggests that information extracted from the neighboring samples in a sequence can improve the accuracy of a base classifier.
We then focus on the inclusion of complementary information from different sensors like 3D point clouds (LIDAR – depth), far infrared images (FIR), or disparity maps (stereo pair cameras). For this end we develop a multi-modal framework in which information from different sensors is used for increasing detection accuracy (by increasing information redundancy). Finally we propose a multi-view pedestrian detector, this multi-view approach splits the detection problem in n sub-problems.
Each sub-problem will detect objects in a given specific view reducing in that way the variability problem faced when a single detectors is used for the whole problem. We show that these approaches obtain competitive results with other state-of-the-art methods but instead of design new features, we reuse existing ones boosting their performance.
Address (up) November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor David Vazquez;Antonio Lopez;
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-7-6 Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ Gon2015 Serial 2706
Permanent link to this record
 

 
Author Sergio Vera
Title Anatomic Registration based on Medial Axis Parametrizations Type Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Image registration has been for many years the gold standard method to bring two images into correspondence. It has been used extensively in the eld of medical imaging in order to put images of di erent patients into a common overlapping spatial position. However, medical image registration is a slow, iterative optimization process, where many variables and prone to fall into the pit traps local minima.
A coordinate system parameterizing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to speci c anatomical sites, parameterizations ensure integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric meshes over the surface of anatomical shapes, given their ability to set values at speci c locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at discrete sites of limited geometric diversity.
The medial surface of the shape can be used to provide a continuous basis for the de nition of a depth coordinate. However, given that di erent methods for generation of medial surfaces generate di erent manifolds, not all of them are equally suited to be the basis of radial coordinate for a parameterization. It would be desirable that the medial surface will be smooth, and robust to surface shape noise, with low number of spurious branches or surfaces.
In this thesis we present methods for computation of smooth medial manifolds and apply them to the generation of for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. This reference system sets a solid base for creating anatomical models of the anatomical shapes, and allows comparing several patients in a common framework of reference.
Address (up) November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil;Miguel Angel Gonzalez Ballester
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-8-3 Medium
Area Expedition Conference
Notes IAM; 600.075 Approved no
Call Number Admin @ si @ Ver2015 Serial 2708
Permanent link to this record
 

 
Author Joan M. Nuñez
Title Vascular Pattern Characterization in Colonoscopy Images Type Book Whole
Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Colorectal cancer is the third most common cancer worldwide and the second most common malignant tumor in Europe. Screening tests have shown to be very e ective in increasing the survival rates since they allow an early detection of polyps. Among the di erent screening techniques, colonoscopy is considered the gold standard although clinical studies mention several problems that have an impact in the quality of the procedure. The navigation through the rectum and colon track can be challenging for the physicians which can increase polyp miss rates. The thorough visualization of the colon track must be ensured so that
the chances of missing lesions are minimized. The visual analysis of colonoscopy images can provide important information to the physicians and support their navigation during the procedure.
Blood vessels and their branching patterns can provide descriptive power to potentially develop biometric markers. Anatomical markers based on blood vessel patterns could be used to identify a particular scene in colonoscopy videos and to support endoscope navigation by generating a sequence of ordered scenes through the di erent colon sections. By verifying the presence of vascular content in the endoluminal scene it is also possible to certify a proper
inspection of the colon mucosa and to improve polyp localization. Considering the potential uses of blood vessel description, this contribution studies the characterization of the vascular content and the analysis of the descriptive power of its branching patterns.
Blood vessel characterization in colonoscopy images is shown to be a challenging task. The endoluminal scene is conformed by several elements whose similar characteristics hinder the development of particular models for each of them. To overcome such diculties we propose the use of the blood vessel branching characteristics as key features for pattern description. We present a model to characterize junctions in binary patterns. The implementation
of the junction model allows us to develop a junction localization method. We
created two data sets including manually labeled vessel information as well as manual ground truths of two types of keypoint landmarks: junctions and endpoints. The proposed method outperforms the available algorithms in the literature in experiments in both, our newly created colon vessel data set, and in DRIVE retinal fundus image data set. In the latter case, we created a manual ground truth of junction coordinates. Since we want to explore the descriptive potential of junctions and vessels, we propose a graph-based approach to
create anatomical markers. In the context of polyp localization, we present a new method to inhibit the in uence of blood vessels in the extraction valley-pro le information. The results show that our methodology decreases vessel in
uence, increases polyp information and leads to an improvement in state-of-the-art polyp localization performance. We also propose a polyp-speci c segmentation method that outperforms other general and speci c approaches.
Address (up) November 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-943427-6-9 Medium
Area Expedition Conference
Notes MV Approved no
Call Number Admin @ si @ Nuñ2015 Serial 2709
Permanent link to this record
 

 
Author Adriana Romero
Title Assisting the training of deep neural networks with applications to computer vision Type Book Whole
Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies.
Learning (very) deep representation hierarchies is a challenging task, which
involves the optimization of highly non-convex functions. Therefore, the search
for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing.
In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance.
Yet, while emphasizing the great value of unsupervised learning methods when
labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations.
Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing
than the ones extracted by large state-of-the-art models, while compellingly
reducing the time and memory consumption of the model.
Address (up) October 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Carlo Gatta;Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ Rom2015 Serial 2707
Permanent link to this record
 

 
Author Kamal Nasrollahi; Sergio Escalera; P. Rasti; Gholamreza Anbarjafari; Xavier Baro; Hugo Jair Escalante; Thomas B. Moeslund
Title Deep Learning based Super-Resolution for Improved Action Recognition Type Conference Article
Year 2015 Publication 5th International Conference on Image Processing Theory, Tools and Applications IPTA2015 Abbreviated Journal
Volume Issue Pages 67 - 72
Keywords
Abstract Action recognition systems mostly work with videos of proper quality and resolution. Even most challenging benchmark databases for action recognition, hardly include videos of low-resolution from, e.g., surveillance cameras. In videos recorded by such cameras, due to the distance between people and cameras, people are pictured very small and hence challenge action recognition algorithms. Simple upsampling methods, like bicubic interpolation, cannot retrieve all the detailed information that can help the recognition. To deal with this problem, in this paper we combine results of bicubic interpolation with results of a state-ofthe-art deep learning-based super-resolution algorithm, through an alpha-blending approach. The experimental results obtained on down-sampled version of a large subset of Hoolywood2 benchmark database show the importance of the proposed system in increasing the recognition rate of a state-of-the-art action recognition system for handling low-resolution videos.
Address (up) Orleans; France; November 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IPTA
Notes HuPBA;MV Approved no
Call Number Admin @ si @ NER2015 Serial 2648
Permanent link to this record
 

 
Author Olivier Lefebvre; Pau Riba; Charles Fournier; Alicia Fornes; Josep Llados; Rejean Plamondon; Jules Gagnon-Marchand
Title Monitoring neuromotricity on-line: a cloud computing approach Type Conference Article
Year 2015 Publication 17th Conference of the International Graphonomics Society IGS2015 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain.
Address (up) Pointe-à-Pitre; Guadeloupe; June 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ LRF2015 Serial 2617
Permanent link to this record
 

 
Author J.Kuhn; A.Nussbaumer; J.Pirker; Dimosthenis Karatzas; A. Pagani; O.Conlan; M.Memmel; C.M.Steiner; C.Gutl; D.Albert; Andreas Dengel
Title Advancing Physics Learning Through Traversing a Multi-Modal Experimentation Space Type Conference Article
Year 2015 Publication Workshop Proceedings on the 11th International Conference on Intelligent Environments Abbreviated Journal
Volume 19 Issue Pages 373-380
Keywords
Abstract Translating conceptual knowledge into real world experiences presents a significant educational challenge. This position paper presents an approach that supports learners in moving seamlessly between conceptual learning and their application in the real world by bringing physical and virtual experiments into everyday settings. Learners are empowered in conducting these situated experiments in a variety of physical settings by leveraging state of the art mobile, augmented reality, and virtual reality technology. A blend of mobile-based multi-sensory physical experiments, augmented reality and enabling virtual environments can allow learners to bridge their conceptual learning with tangible experiences in a completely novel manner. This approach focuses on the learner by applying self-regulated personalised learning techniques, underpinned by innovative pedagogical approaches and adaptation techniques, to ensure that the needs and preferences of each learner are catered for individually.
Address (up) Praga; Chzech Republic; July 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IE
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ KNP2015 Serial 2694
Permanent link to this record