|   | 
Details
   web
Records
Author David Berga; Xavier Otazu
Title A neurodynamic model of saliency prediction in v1 Type Journal Article
Year 2022 Publication Neural Computation Abbreviated Journal NEURALCOMPUT
Volume 34 Issue 2 Pages 378-414
Keywords
Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes NEUROBIT; 600.128; 600.120 Approved no
Call Number Admin @ si @ BeO2022 Serial 3696
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera; Vassilis Athitsos; Mohammad Sabokrou
Title All You Need In Sign Language Production Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords Sign Language Production; Sign Language Recog- nition; Sign Language Translation; Deep Learning; Survey; Deaf
Abstract Sign Language is the dominant form of communication language used in the deaf and hearing-impaired community. To make an easy and mutual communication between the hearing-impaired and the hearing communities, building a robust system capable of translating the spoken language into sign language and vice versa is fundamental.
To this end, sign language recognition and production are two necessary parts for making such a two-way system. Signlanguage recognition and production need to cope with some critical challenges. In this survey, we review recent advances in
Sign Language Production (SLP) and related areas using deep learning. To have more realistic perspectives to sign language, we present an introduction to the Deaf culture, Deaf centers, psychological perspective of sign language, the main differences between spoken language and sign language. Furthermore, we present the fundamental components of a bi-directional sign language translation system, discussing the main challenges in this area. Also, the backbone architectures and methods in SLP are briefly introduced and the proposed taxonomy on SLP is presented. Finally, a general framework for SLP and performance evaluation, and also a discussion on the recent developments, advantages, and limitations in SLP, commenting on possible lines for future research are presented.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ RKE2022c Serial 3698
Permanent link to this record
 

 
Author Y. Mori; M.Misawa; Jorge Bernal; M. Bretthauer; S.Kudo; A. Rastogi; Gloria Fernandez Esparrach
Title Artificial Intelligence for Disease Diagnosis-the Gold Standard Challenge Type Journal Article
Year 2022 Publication Gastrointestinal Endoscopy Abbreviated Journal
Volume 96 Issue 2 Pages 370-372
Keywords
Abstract
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ MMB2022 Serial 3701
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera
Title E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 7489-7503
Keywords
Abstract More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ GHE2022 Serial 3721
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi
Title Few shots are all you need: A progressive learning approach for low resource handwritten text recognition Type Journal Article
Year 2022 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 160 Issue Pages 43-49
Keywords
Abstract Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching
Address (down)
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162; 602.230 Approved no
Call Number Admin @ si @ SFK2022 Serial 3736
Permanent link to this record
 

 
Author Penny Tarling; Mauricio Cantor; Albert Clapes; Sergio Escalera
Title Deep learning with self-supervision and uncertainty regularization to count fish in underwater images Type Journal Article
Year 2022 Publication PloS One Abbreviated Journal Plos
Volume 17 Issue 5 Pages e0267759
Keywords
Abstract Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.
Address (down)
Corporate Author Thesis
Publisher Public Library of Science Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ TCC2022 Serial 3743
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer
Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
Year 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS
Volume Issue Pages
Keywords Class-incremental learning; Self-training; Semantic segmentation.
Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.147; 611.008; Approved no
Call Number Admin @ si @ YLW2022 Serial 3745
Permanent link to this record
 

 
Author Arnau Baro
Title Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Alicia Fornes
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-8-6 Medium
Area Expedition Conference
Notes DAG; Approved no
Call Number Admin @ si @ Bar2022 Serial 3754
Permanent link to this record
 

 
Author Ali Furkan Biten
Title A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-5-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Bit2022 Serial 3755
Permanent link to this record
 

 
Author Andres Mafla
Title Leveraging Scene Text Information for Image Interpretation Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-6-2 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Maf2022 Serial 3756
Permanent link to this record
 

 
Author Mohamed Ali Souibgui
Title Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities.
Address (down)
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Alicia Fornes;Yousri Kessentini
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-8-6 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Sou2022 Serial 3757
Permanent link to this record
 

 
Author Adam Fodor; Rachid R. Saboundji; Julio C. S. Jacques Junior; Sergio Escalera; David Gallardo Pujol; Andras Lorincz
Title Multimodal Sentiment and Personality Perception Under Speech: A Comparison of Transformer-based Architectures Type Conference Article
Year 2022 Publication Understanding Social Behavior in Dyadic and Small Group Interactions Abbreviated Journal
Volume 173 Issue Pages 218-241
Keywords
Abstract Human-machine, human-robot interaction, and collaboration appear in diverse fields, from homecare to Cyber-Physical Systems. Technological development is fast, whereas real-time methods for social communication analysis that can measure small changes in sentiment and personality states, including visual, acoustic and language modalities are lagging, particularly when the goal is to build robust, appearance invariant, and fair methods. We study and compare methods capable of fusing modalities while satisfying real-time and invariant appearance conditions. We compare state-of-the-art transformer architectures in sentiment estimation and introduce them in the much less explored field of personality perception. We show that the architectures perform differently on automatic sentiment and personality perception, suggesting that each task may be better captured/modeled by a particular method. Our work calls attention to the attractive properties of the linear versions of the transformer architectures. In particular, we show that the best results are achieved by fusing the different architectures{’} preprocessing methods. However, they pose extreme conditions in computation power and energy consumption for real-time computations for quadratic transformers due to their memory requirements. In turn, linear transformers pave the way for quantifying small changes in sentiment estimation and personality perception for real-time social communications for machines and robots.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PMLR
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ FSJ2022 Serial 3769
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Dario Carpio; Henry Velesaca; Francisca Burgos; Patricia Urdiales
Title Deep Learning Based Shrimp Classification Type Conference Article
Year 2022 Publication 17th International Symposium on Visual Computing Abbreviated Journal
Volume 13598 Issue Pages 36–45
Keywords Pigmentation; Color space; Light weight network
Abstract This work proposes a novel approach based on deep learning to address the classification of shrimp (Pennaeus vannamei) into two classes, according to their level of pigmentation accepted by shrimp commerce. The main goal of this actual study is to support the shrimp industry in terms of price and process. An efficient CNN architecture is proposed to perform image classification through a program that could be set other in mobile devices or in fixed support in the shrimp supply chain. The proposed approach is a lightweight model that uses HSV color space shrimp images. A simple pipeline shows the most important stages performed to determine a pattern that identifies the class to which they belong based on their pigmentation. For the experiments, a database acquired with mobile devices of various brands and models has been used to capture images of shrimp. The results obtained with the images in the RGB and HSV color space allow for testing the effectiveness of the proposed model.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISVC
Notes MSIAU; no proj Approved no
Call Number Admin @ si @ SAC2022 Serial 3772
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Angel Sappa; Dario Carpio; Rafael E. Rivadeneira; Angel Sanchez
Title Review on Common Techniques for Urban Environment Video Analytics Type Conference Article
Year 2022 Publication Anais do III Workshop Brasileiro de Cidades Inteligentes Abbreviated Journal
Volume Issue Pages 107-118
Keywords Video Analytics; Review; Urban Environments; Smart Cities
Abstract This work compiles the different computer vision-based approaches
from the state-of-the-art intended for video analytics in urban environments.
The manuscript groups the different approaches according to the typical modules present in video analysis, including image preprocessing, object detection,
classification, and tracking. This proposed pipeline serves as a basic guide to
representing these most representative approaches in this topic of video analysis
that will be addressed in this work. Furthermore, the manuscript is not intended
to be an exhaustive review of the most advanced approaches, but only a list of
common techniques proposed to address recurring problems in this field.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WBCI
Notes MSIAU; 601.349 Approved no
Call Number Admin @ si @ VSS2022 Serial 3773
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla
Title Thermal Image Super-Resolution: A Novel Unsupervised Approach Type Conference Article
Year 2022 Publication International Joint Conference on Computer Vision, Imaging and Computer Graphics Abbreviated Journal
Volume 1474 Issue Pages 495–506
Keywords
Abstract This paper proposes the use of a CycleGAN architecture for thermal image super-resolution under a transfer domain strategy, where middle-resolution images from one camera are transferred to a higher resolution domain of another camera. The proposed approach is trained with a large dataset acquired using three thermal cameras at different resolutions. An unsupervised learning process is followed to train the architecture. Additional loss function is proposed trying to improve results from the state of the art approaches. Following the first thermal image super-resolution challenge (PBVS-CVPR2020) evaluations are performed. A comparison with previous works is presented showing the proposed approach reaches the best results.
Address (down)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MSIAU; 600.130 Approved no
Call Number Admin @ si @ RSV2022d Serial 3776
Permanent link to this record