|   | 
Details
   web
Records
Author Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol
Title The Robust Reading Competition Annotation and Evaluation Platform Type Conference Article
Year 2017 Publication 1st International Workshop on Open Services and Tools for Document Analysis Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The ICDAR Robust Reading Competition (RRC), initiated in 2003 and re-established in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation
of data, and to provide online and offline performance evaluation and analysis services
Address (up) Kyoto; Japan; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR-OST
Notes DAG; 600.084; 600.121; 600.129 Approved no
Call Number Admin @ si @ KGR2017 Serial 3063
Permanent link to this record
 

 
Author Raul Gomez; Baoguang Shi; Lluis Gomez; Lukas Numann; Andreas Veit; Jiri Matas; Serge Belongie; Dimosthenis Karatzas
Title ICDAR2017 Robust Reading Challenge on COCO-Text Type Conference Article
Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up) Kyoto; Japan; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ GSG2017 Serial 3076
Permanent link to this record
 

 
Author Arash Akbarinia; Raquel Gil Rodriguez; C. Alejandro Parraga
Title Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism Type Conference Article
Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of maxpooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism.
Address (up) London; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes NEUROBIT; 600.068; 600.072 Approved no
Call Number Admin @ si @ AGP2017 Serial 2992
Permanent link to this record
 

 
Author Rada Deeb; Damien Muselet; Mathieu Hebert; Alain Tremeau; Joost Van de Weijer
Title 3D color charts for camera spectral sensitivity estimation Type Conference Article
Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Estimating spectral data such as camera sensor responses or illuminant spectral power distribution from raw RGB camera outputs is crucial in many computer vision applications.
Usually, 2D color charts with various patches of known spectral reflectance are
used as reference for such purpose. Deducing n-D spectral data (n»3) from 3D RGB inputs is an ill-posed problem that requires a high number of inputs. Unfortunately, most of the natural color surfaces have spectral reflectances that are well described by low-dimensional linear models, i.e. each spectral reflectance can be approximated by a weighted sum of the others. It has been shown that adding patches to color charts does not help in practice, because the information they add is redundant with the information provided by the first set of patches. In this paper, we propose to use spectral data of
higher dimensionality by using 3D color charts that create inter-reflections between the surfaces. These inter-reflections produce multiplications between natural spectral curves and so provide non-linear spectral curves. We show that such data provide enough information for accurate spectral data estimation.
Address (up) London; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ DMH2017b Serial 3037
Permanent link to this record
 

 
Author Fernando Vilariño; Dan Norton
Title Using mutimedia tools to spread poetry collections Type Conference Article
Year 2017 Publication Internet librarian International Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up) London; UK; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ILI
Notes MV; 600.097;SIAI Approved no
Call Number Admin @ si @ ViN2017 Serial 3031
Permanent link to this record
 

 
Author Daniel Hernandez; Lukas Schneider; Antonio Espinosa; David Vazquez; Antonio Lopez; Uwe Franke; Marc Pollefeys; Juan C. Moure
Title Slanted Stixels: Representing San Francisco's Steepest Streets Type Conference Article
Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this work we present a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced that uses an extremely efficient over-segmentation. In doing so, the computational complexity of the Stixel inference algorithm is reduced significantly, achieving real-time computation capabilities with only a slight drop in accuracy. We evaluate the proposed approach in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.
Address (up) London; uk; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference BMVC
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HSE2017a Serial 2945
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz
Title Combining Models from Multiple Sources for RGB-D Scene Recognition Type Conference Article
Year 2017 Publication 26th International Joint Conference on Artificial Intelligence Abbreviated Journal
Volume Issue Pages 4523-4529
Keywords Robotics and Vision; Vision and Perception
Abstract Depth can complement RGB with useful cues about object volumes and scene layout. However, RGB-D image datasets are still too small for directly training deep convolutional neural networks (CNNs), in contrast to the massive monomodal RGB datasets. Previous works in RGB-D recognition typically combine two separate networks for RGB and depth data, pretrained with a large RGB dataset and then fine tuned to the respective target RGB and depth datasets. These approaches have several limitations: 1) only use low-level filters learned from RGB data, thus not being able to exploit properly depth-specific patterns, and 2) RGB and depth features are only combined at high-levels but rarely at lower-levels. In this paper, we propose a framework that leverages both knowledge acquired from large RGB datasets together with depth-specific cues learned from the limited depth data, obtaining more effective multi-source and multi-modal representations. We propose a multi-modal combination method that selects discriminative combinations of layers from the different source models and target modalities, capturing both high-level properties of the task and intrinsic low-level properties of both modalities.
Address (up) Melbourne; Australia; August 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IJCAI
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ SJH2017b Serial 2966
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate
Title Is there a pattern of Chromosome territoriality along mice spermatogenesis? Type Conference Article
Year 2017 Publication 3rd Spanish MeioNet Meeting Abstract Book Abbreviated Journal
Volume Issue Pages 55-56
Keywords
Abstract
Address (up) Miraflores de la Sierra; Madrid; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MEIONET
Notes IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ Serial 2958
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa; Arash Akbarinia
Title Multispectral Single-Sensor RGB-NIR Imaging: New Challenges and Opportunities Type Conference Article
Year 2017 Publication 7th International Conference on Image Processing Theory, Tools & Applications Abbreviated Journal
Volume Issue Pages
Keywords Color restoration; Neural networks; Singlesensor cameras; Multispectral images; RGB-NIR dataset
Abstract Multispectral images captured with a single sensor camera have become an attractive alternative for numerous computer vision applications. However, in order to fully exploit their potentials, the color restoration problem (RGB representation) should be addressed. This problem is more evident in outdoor scenarios containing vegetation, living beings, or specular materials. The problem of color distortion emerges from the sensitivity of sensors due to the overlap of visible and near infrared spectral bands. This paper empirically evaluates the variability of the near infrared (NIR) information with respect to the changes of light throughout the day. A tiny neural network is proposed to restore the RGB color representation from the given RGBN (Red, Green, Blue, NIR) images. In order to evaluate the proposed algorithm, different experiments on a RGBN outdoor dataset are conducted, which include various challenging cases. The obtained result shows the challenge and the importance of addressing color restoration in single sensor multispectral images.
Address (up) Montreal; Canada; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IPTA
Notes NEUROBIT; MSIAU; 600.122 Approved no
Call Number Admin @ si @ SSA2017 Serial 3074
Permanent link to this record
 

 
Author Alexey Dosovitskiy; German Ros; Felipe Codevilla; Antonio Lopez; Vladlen Koltun
Title CARLA: An Open Urban Driving Simulator Type Conference Article
Year 2017 Publication 1st Annual Conference on Robot Learning. Proceedings of Machine Learning Abbreviated Journal
Volume 78 Issue Pages 1-16
Keywords Autonomous driving; sensorimotor control; simulation
Abstract We introduce CARLA, an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. We use CARLA to study the performance of three approaches to autonomous driving: a classic modular pipeline, an endto-end
model trained via imitation learning, and an end-to-end model trained via
reinforcement learning. The approaches are evaluated in controlled scenarios of
increasing difficulty, and their performance is examined via metrics provided by CARLA, illustrating the platform’s utility for autonomous driving research.
Address (up) Mountain View; CA; USA; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CORL
Notes ADAS; 600.085; 600.118 Approved no
Call Number Admin @ si @ DRC2017 Serial 2988
Permanent link to this record
 

 
Author Laura Lopez-Fuentes; Sebastia Massanet; Manuel Gonzalez-Hidalgo
Title Image vignetting reduction via a maximization of fuzzy entropy Type Conference Article
Year 2017 Publication IEEE International Conference on Fuzzy Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In many computer vision applications, vignetting is an undesirable effect which must be removed in a pre-processing step. Recently, an algorithm for image vignetting correction has been presented by means of a minimization of log-intensity entropy. This method relies on an increase of the entropy of the image when it is affected with vignetting. In this paper, we propose a novel algorithm to reduce image vignetting via a maximization of the fuzzy entropy of the image. Fuzzy entropy quantifies the fuzziness degree of a fuzzy set and its value is also modified by the presence of vignetting. The experimental results show that this novel algorithm outperforms in most cases the algorithm based on the minimization of log-intensity entropy both from the qualitative and the quantitative point of view.
Address (up) Napoles; Italia; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FUZZ-IEEE
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LMG2017 Serial 2972
Permanent link to this record
 

 
Author Ivet Rafegas
Title Color in Visual Recognition: from flat to deep representations and some biological parallelisms Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Visual recognition is one of the main problems in computer vision that attempts to solve image understanding by deciding what objects are in images. This problem can be computationally solved by using relevant sets of visual features, such as edges, corners, color or more complex object parts. This thesis contributes to how color features have to be represented for recognition tasks.

Image features can be extracted following two different approaches. A first approach is defining handcrafted descriptors of images which is then followed by a learning scheme to classify the content (named flat schemes in Kruger et al. (2013). In this approach, perceptual considerations are habitually used to define efficient color features. Here we propose a new flat color descriptor based on the extension of color channels to boost the representation of spatio-chromatic contrast that surpasses state-of-the-art approaches. However, flat schemes present a lack of generality far away from the capabilities of biological systems. A second approach proposes evolving these flat schemes into a hierarchical process, like in the visual cortex. This includes an automatic process to learn optimal features. These deep schemes, and more specifically Convolutional Neural Networks (CNNs), have shown an impressive performance to solve various vision problems. However, there is a lack of understanding about the internal representation obtained, as a result of automatic learning. In this thesis we propose a new methodology to explore the internal representation of trained CNNs by defining the Neuron Feature as a visualization of the intrinsic features encoded in each individual neuron. Additionally, and inspired by physiological techniques, we propose to compute different neuron selectivity indexes (e.g., color, class, orientation or symmetry, amongst others) to label and classify the full CNN neuron population to understand learned representations.

Finally, using the proposed methodology, we show an in-depth study on how color is represented on a specific CNN, trained for object recognition, that competes with primate representational abilities (Cadieu et al (2014)). We found several parallelisms with biological visual systems: (a) a significant number of color selectivity neurons throughout all the layers; (b) an opponent and low frequency representation of color oriented edges and a higher sampling of frequency selectivity in brightness than in color in 1st layer like in V1; (c) a higher sampling of color hue in the second layer aligned to observed hue maps in V2; (d) a strong color and shape entanglement in all layers from basic features in shallower layers (V1 and V2) to object and background shapes in deeper layers (V4 and IT); and (e) a strong correlation between neuron color selectivities and color dataset bias.
Address (up) November 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-7-0 Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Raf2017 Serial 3100
Permanent link to this record
 

 
Author Meysam Madadi
Title Human Segmentation, Pose Estimation and Applications Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
Address (up) October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Sergio Escalera;Jordi Gonzalez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-3-2 Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ Mad2017 Serial 3017
Permanent link to this record
 

 
Author Arash Akbarinia
Title Computational Model of Visual Perception: From Colour to Form Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The original idea of this project was to study the role of colour in the challenging task of object recognition. We started by extending previous research on colour naming showing that it is feasible to capture colour terms through parsimonious ellipsoids. Although, the results of our model exceeded state-of-the-art in two benchmark datasets, we realised that the two phenomena of metameric lights and colour constancy must be addressed prior to any further colour processing. Our investigation of metameric pairs reached the conclusion that they are infrequent in real world scenarios. Contrary to that, the illumination of a scene often changes dramatically. We addressed this issue by proposing a colour constancy model inspired by the dynamical centre-surround adaptation of neurons in the visual cortex. This was implemented through two overlapping asymmetric Gaussians whose variances and heights are adjusted according to the local contrast of pixels. We complemented this model with a generic contrast-variant pooling mechanism that inversely connect the percentage of pooled signal to the local contrast of a region. The results of our experiments on four benchmark datasets were indeed promising: the proposed model, although simple, outperformed even learning-based approaches in many cases. Encouraged by the success of our contrast-variant surround modulation, we extended this approach to detect boundaries of objects. We proposed an edge detection model based on the first derivative of the Gaussian kernel. We incorporated four types of surround: full, far, iso- and orthogonal-orientation. Furthermore, we accounted for the pooling mechanism at higher cortical areas and the shape feedback sent to lower areas. Our results in three benchmark datasets showed significant improvement over non-learning algorithms.
To summarise, we demonstrated that biologically-inspired models offer promising solutions to computer vision problems, such as, colour naming, colour constancy and edge detection. We believe that the greatest contribution of this Ph.D dissertation is modelling the concept of dynamic surround modulation that shows the significance of contrast-variant surround integration. The models proposed here are grounded on only a portion of what we know about the human visual system. Therefore, it is only natural to complement them accordingly in future works.
Address (up) October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-4-9 Medium
Area Expedition Conference
Notes NEUROBIT Approved no
Call Number Admin @ si @ Akb2017 Serial 3019
Permanent link to this record
 

 
Author Cristhian Aguilera
Title Local feature description in cross-spectral imagery Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Over the last few years, the number of consumer computer vision applications has increased dramatically. Today, computer vision solutions can be found in video game consoles, smartphone applications, driving assistance – just to name a few. Ideally, we require the performance of those applications, particularly those that are safety critical to remain constant under any external environment factors, such as changes in illumination or weather conditions. However, this is not always possible or very difficult to obtain by only using visible imagery, due to the inherent limitations of the images from that spectral band. For that reason, the use of images from different or multiple spectral bands is becoming more appealing.
The aforementioned possible advantages of using images from multiples spectral bands on various vision applications make multi-spectral image processing a relevant topic for research and development. Like in visible image processing, multi-spectral image processing needs tools and algorithms to handle information from various spectral bands. Furthermore, traditional tools such as local feature detection, which is the basis of many vision tasks such as visual odometry, image registration, or structure from motion, must be adjusted or reformulated to operate under new conditions. Traditional feature detection, description, and matching methods tend to underperform in multi-spectral settings, in comparison to mono-spectral settings, due to the natural differences between each spectral band.
The work in this thesis is focused on the local feature description problem when cross-spectral images are considered. In this context, this dissertation has three main contributions. Firstly, the work starts by proposing the usage of a combination of frequency and spatial information, in a multi-scale scheme, as feature description. Evaluations of this proposal, based on classical hand-made feature descriptors, and comparisons with state of the art cross-spectral approaches help to find and understand limitations of such strategy. Secondly, different convolutional neural network (CNN) based architectures are evaluated when used to describe cross-spectral image patches. Results showed that CNN-based methods, designed to work with visible monocular images, could be successfully applied to the description of images from two different spectral bands, with just minor modifications. In this framework, a novel CNN-based network model, specifically intended to describe image patches from two different spectral bands, is proposed. This network, referred to as Q-Net, outperforms state of the art in the cross-spectral domain, including both previous hand-made solutions as well as L2 CNN-based architectures. The third contribution of this dissertation is in the cross-spectral feature description application domain. The multispectral odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two different multi-spectral datasets are generated and shared with the community to be used as benchmarks for further studies.
Address (up) October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-6-3 Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ Agu2017 Serial 3020
Permanent link to this record