|   | 
Details
   web
Records
Author Jun Wan; Guodong Guo; Sergio Escalera; Hugo Jair Escalante; Stan Z Li
Title Best Solutions Proposed in the Context of the Face Anti-spoofing Challenge Series Type Book Chapter
Year 2023 Publication Advances in Face Presentation Attack Detection Abbreviated Journal
Volume Issue Pages 37–78
Keywords
Abstract (down) The PAD competitions we organized attracted more than 835 teams from home and abroad, most of them from the industry, which shows that the topic of face anti-spoofing is closely related to daily life, and there is an urgent need for advanced algorithms to solve its application needs. Specifically, the Chalearn LAP multi-modal face anti-spoofing attack detection challenge attracted more than 300 teams for the development phase with a total of 13 teams qualifying for the final round; the Chalearn Face Anti-spoofing Attack Detection Challenge attracted 340 teams in the development stage, and finally, 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively; the 3D High-Fidelity Mask Face Presentation Attack Detection Challenge attracted 195 teams for the development phase with a total of 18 teams qualifying for the final round. All the results were verified and re-run by the organizing team, and the results were used for the final ranking. In this chapter, we briefly the methods developed by the teams participating in each competition, and introduce the algorithm details of the top-three ranked teams in detail.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ WGE2023d Serial 3958
Permanent link to this record
 

 
Author Arash Akbarinia
Title Computational Model of Visual Perception: From Colour to Form Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) The original idea of this project was to study the role of colour in the challenging task of object recognition. We started by extending previous research on colour naming showing that it is feasible to capture colour terms through parsimonious ellipsoids. Although, the results of our model exceeded state-of-the-art in two benchmark datasets, we realised that the two phenomena of metameric lights and colour constancy must be addressed prior to any further colour processing. Our investigation of metameric pairs reached the conclusion that they are infrequent in real world scenarios. Contrary to that, the illumination of a scene often changes dramatically. We addressed this issue by proposing a colour constancy model inspired by the dynamical centre-surround adaptation of neurons in the visual cortex. This was implemented through two overlapping asymmetric Gaussians whose variances and heights are adjusted according to the local contrast of pixels. We complemented this model with a generic contrast-variant pooling mechanism that inversely connect the percentage of pooled signal to the local contrast of a region. The results of our experiments on four benchmark datasets were indeed promising: the proposed model, although simple, outperformed even learning-based approaches in many cases. Encouraged by the success of our contrast-variant surround modulation, we extended this approach to detect boundaries of objects. We proposed an edge detection model based on the first derivative of the Gaussian kernel. We incorporated four types of surround: full, far, iso- and orthogonal-orientation. Furthermore, we accounted for the pooling mechanism at higher cortical areas and the shape feedback sent to lower areas. Our results in three benchmark datasets showed significant improvement over non-learning algorithms.
To summarise, we demonstrated that biologically-inspired models offer promising solutions to computer vision problems, such as, colour naming, colour constancy and edge detection. We believe that the greatest contribution of this Ph.D dissertation is modelling the concept of dynamic surround modulation that shows the significance of contrast-variant surround integration. The models proposed here are grounded on only a portion of what we know about the human visual system. Therefore, it is only natural to complement them accordingly in future works.
Address October 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor C. Alejandro Parraga
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-4-9 Medium
Area Expedition Conference
Notes NEUROBIT Approved no
Call Number Admin @ si @ Akb2017 Serial 3019
Permanent link to this record
 

 
Author Alvaro Cepero; Albert Clapes; Sergio Escalera
Title Automatic non-verbal communication skills analysis: a quantitative evaluation Type Journal Article
Year 2015 Publication AI Communications Abbreviated Journal AIC
Volume 28 Issue 1 Pages 87-101
Keywords Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning
Abstract (down) The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-7126 ISBN Medium
Area Expedition Conference
Notes HUPBA;MILAB Approved no
Call Number Admin @ si @ CCE2015 Serial 2549
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Assessing agonist efficacy in an uncertain Em world Type Conference Article
Year 2012 Publication 40th Keystone Symposia on mollecular and celular biology Abbreviated Journal
Volume Issue Pages 79
Keywords
Abstract (down) The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
Address Fairmont Banff Springs, Banff, Alberta, Canada
Corporate Author Keystone Symposia Thesis
Publisher Keystone Symposia Place of Publication Editor A. Christopoulus and M. Bouvier
Language english Summary Language english Original Title
Series Editor Keystone Symposia Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference KSMCB
Notes IAM Approved no
Call Number IAM @ iam @ RGG2012 Serial 1855
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Multiple active receptor conformation, agonist efficacy and maximum effect of the system: the conformation-based operational model of agonism, Type Journal Article
Year 2013 Publication Drug Discovery Today Abbreviated Journal DDT
Volume 18 Issue 7-8 Pages 365-371
Keywords
Abstract (down) The operational model of agonism assumes that the maximum effect a particular receptor system can achieve (the Em parameter) is fixed. Em estimates are above but close to the asymptotic maximum effects of endogenous agonists. The concept of Em is contradicted by superagonists and those positive allosteric modulators that significantly increase the maximum effect of endogenous agonists. An extension of the operational model is proposed that assumes that the Em parameter does not necessarily have a single value for a receptor system but has multiple values associated to multiple active receptor conformations. The model provides a mechanistic link between active receptor conformation and agonist efficacy, which can be useful for the analysis of agonist response under different receptor scenarios.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.057; 600.054 Approved no
Call Number IAM @ iam @ RGG2013a Serial 2190
Permanent link to this record
 

 
Author Fernando Vilariño
Title Citizen experience as a powerful communication tool: Open Innovation and the role of Living Labs in EU Type Conference Article
Year 2017 Publication European Conference of Science Journalists Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) The Open Innovation 2.0 model spearheaded by the European Commission introduces conceptual changes in how innovation processes should be developed. The notion of an innovation ecosystem, and the active participation of the citizens (and all the different actors of the quadruple helix) in innovation processes, opens up new channels for scientific communication, where the citizens (and all actors) can be naturally reached and facilitate the spread of the scientific message in their communities. Unleashing the power of such mechanisms, while maintaining control over the scientific communication done through such channels presents an opportunity and a challenge at the same time.

This workshop will look into key concepts that the Open Innovation 2.0 EU model introduces, and what new opportunities for communication they bring about. Specifically, we will focus on Living Labs, as a key instrument for implementing this innovation model at the regional level, and their potential in creating scientific dissemination spaces.
Address Copenhagen; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECSJ
Notes MV; 600.097;SIAI Approved no
Call Number Admin @ si @ Vil2017a Serial 3032
Permanent link to this record
 

 
Author Jaume Garcia; David Rotger; Francesc Carreras; R.Leta; Petia Radeva
Title Contrast echography segmentation and tracking by trained deformable models Type Conference Article
Year 2003 Publication Proc. Computers in Cardiology Abbreviated Journal
Volume 30 Issue Pages 173-176
Keywords
Abstract (down) The objective of this work is to segment the human left ventricle myocardium (LVM) in contrast echocardiography imaging and thus track it along a cardiac cycle in order to extract quantitative data about heart function. Ultrasound images are hard to work with due to their speckle appearance. To overcome this we report the combination of active contour models (ACM) or snakes and active shape models (ASM). The ability of ACM in giving closed and smooth curves in addition to the power of the ASM in producing shapes similar to the ones learned, evoke to a robust algorithm. Meanwhile the snake is attracted towards image main features, ASM acts as a correction factor. The algorithm was tested independently on 180 frames and satisfying results were obtained: in 95% the maximum difference between automatic and experts segmentation was less than 12 pixels.
Address
Corporate Author Thesis
Publisher Place of Publication Centre de Visió per Computador – Dept. Informàtica, UAB Edifici O – Campus UAB, 08193 Bellater Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0276-6547 ISBN 0-7803-8170-X Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GRC2003 Serial 1512
Permanent link to this record
 

 
Author Siyang Song; Micol Spitale; Cheng Luo; German Barquero; Cristina Palmero; Sergio Escalera; Michel Valstar; Tobias Baur; Fabien Ringeval; Elisabeth Andre; Hatice Gunes
Title REACT2023: The First Multiple Appropriate Facial Reaction Generation Challenge Type Conference Article
Year 2023 Publication Proceedings of the 31st ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages 9620–9624
Keywords
Abstract (down) The Multiple Appropriate Facial Reaction Generation Challenge (REACT2023) is the first competition event focused on evaluating multimedia processing and machine learning techniques for generating human-appropriate facial reactions in various dyadic interaction scenarios, with all participants competing strictly under the same conditions. The goal of the challenge is to provide the first benchmark test set for multi-modal information processing and to foster collaboration among the audio, visual, and audio-visual behaviour analysis and behaviour generation (a.k.a generative AI) communities, to compare the relative merits of the approaches to automatic appropriate facial reaction generation under different spontaneous dyadic interaction conditions. This paper presents: (i) the novelties, contributions and guidelines of the REACT2023 challenge; (ii) the dataset utilized in the challenge; and (iii) the performance of the baseline systems on the two proposed sub-challenges: Offline Multiple Appropriate Facial Reaction Generation and Online Multiple Appropriate Facial Reaction Generation, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2023.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MM
Notes HUPBA Approved no
Call Number Admin @ si @ SSL2023 Serial 3931
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; Gabriel Villalonga; German Ros; David Vazquez; Antonio Lopez
Title 3D-Guided Multiscale Sliding Window for Pedestrian Detection Type Conference Article
Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal
Volume 9117 Issue Pages 560-568
Keywords Pedestrian Detection
Abstract (down) The most relevant modules of a pedestrian detector are the candidate generation and the candidate classification. The former aims at presenting image windows to the latter so that they are classified as containing a pedestrian or not. Much attention has being paid to the classification module, while candidate generation has mainly relied on (multiscale) sliding window pyramid. However, candidate generation is critical for achieving real-time. In this paper we assume a context of autonomous driving based on stereo vision. Accordingly, we evaluate the effect of taking into account the 3D information (derived from the stereo) in order to prune the hundred of thousands windows per image generated by classical pyramidal sliding window. For our study we use a multimodal (RGB, disparity) and multi-descriptor (HOG, LBP, HOG+LBP) holistic ensemble based on linear SVM. Evaluation on data from the challenging KITTI benchmark suite shows the effectiveness of using 3D information to dramatically reduce the number of candidate windows, even improving the overall pedestrian detection accuracy.
Address Santiago de Compostela; España; June 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area ACDC Expedition Conference IbPRIA
Notes ADAS; 600.076; 600.057; 600.054 Approved no
Call Number ADAS @ adas @ GVR2015 Serial 2585
Permanent link to this record
 

 
Author Giuseppe Pezzano; Oliver Diaz; Vicent Ribas Ripoll; Petia Radeva
Title CoLe-CNN+: Context learning – Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation Type Journal Article
Year 2021 Publication Computers in Biology and Medicine Abbreviated Journal CBM
Volume 136 Issue Pages 104689
Keywords
Abstract (down) The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection. Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease. Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ PDR2021 Serial 3635
Permanent link to this record
 

 
Author Wenjuan Gong; Y.Huang; Jordi Gonzalez; Liang Wang
Title An Effective Solution to Double Counting Problem in Human Pose Estimation Type Miscellaneous
Year 2015 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords Pose estimation; double counting problem; mix-ture of parts Model
Abstract (down) The mixture of parts model has been successfully applied to solve the 2D
human pose estimation problem either as an explicitly trained body part model
or as latent variables for pedestrian detection. Even in the era of massive
applications of deep learning techniques, the mixture of parts model is still
effective in solving certain problems, especially in the case with limited
numbers of training samples. In this paper, we consider using the mixture of
parts model for pose estimation, wherein a tree structure is utilized for
representing relations between connected body parts. This strategy facilitates
training and inferencing of the model but suffers from double counting
problems, where one detected body part is counted twice due to lack of
constrains among unconnected body parts. To solve this problem, we propose a
generalized solution in which various part attributes are captured by multiple
features so as to avoid the double counted problem. Qualitative and
quantitative experimental results on a public available dataset demonstrate the
effectiveness of our proposed method.

An Effective Solution to Double Counting Problem in Human Pose Estimation – ResearchGate. Available from: http://www.researchgate.net/publication/271218491AnEffectiveSolutiontoDoubleCountingProbleminHumanPose_Estimation [accessed Oct 22, 2015].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078 Approved no
Call Number Admin @ si @ GHG2015 Serial 2590
Permanent link to this record
 

 
Author Corina Krauter; Ursula Reiter; Albrecht Schmidt; Marc Masana; Rudolf Stollberger; Michael Fuchsjager; Gert Reiter
Title Objective extraction of the temporal evolution of the mitral valve vortex ring from 4D flow MRI Type Conference Article
Year 2019 Publication 27th Annual Meeting & Exhibition of the International Society for Magnetic Resonance in Medicine Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) The mitral valve vortex ring is a promising flow structure for analysis of diastolic function, however, methods for objective extraction of its formation to dissolution are lacking. We present a novel algorithm for objective extraction of the temporal evolution of the mitral valve vortex ring from magnetic resonance 4D flow data and validated the method against visual analysis. The algorithm successfully extracted mitral valve vortex rings during both early- and late-diastolic filling and agreed substantially with visual assessment. Early-diastolic mitral valve vortex ring properties differed between healthy subjects and patients with ischemic heart disease.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISMRM
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ KRS2019 Serial 3300
Permanent link to this record
 

 
Author Miquel Ferrer; Dimosthenis Karatzas; Ernest Valveny; I. Bardaji; Horst Bunke
Title A Generic Framework for Median Graph Computation based on a Recursive Embedding Approach Type Journal Article
Year 2011 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 115 Issue 7 Pages 919-928
Keywords Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
Abstract (down) The median graph has been shown to be a good choice to obtain a represen- tative of a set of graphs. However, its computation is a complex problem. Recently, graph embedding into vector spaces has been proposed to obtain approximations of the median graph. The problem with such an approach is how to go from a point in the vector space back to a graph in the graph space. The main contribution of this paper is the generalization of this previ- ous method, proposing a generic recursive procedure that permits to recover the graph corresponding to a point in the vector space, introducing only the amount of approximation inherent to the use of graph matching algorithms. In order to evaluate the proposed method, we compare it with the set me- dian and with the other state-of-the-art embedding-based methods for the median graph computation. The experiments are carried out using four dif- ferent databases (one semi-artificial and three containing real-world data). Results show that with the proposed approach we can obtain better medi- ans, in terms of the sum of distances to the training graphs, than with the previous existing methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number IAM @ iam @ FKV2011 Serial 1831
Permanent link to this record
 

 
Author Miquel Ferrer; Dimosthenis Karatzas; Ernest Valveny; Horst Bunke
Title A Recursive Embedding Approach to Median Graph Computation Type Conference Article
Year 2009 Publication 7th IAPR – TC–15 Workshop on Graph–Based Representations in Pattern Recognition Abbreviated Journal
Volume 5534 Issue Pages 113–123
Keywords
Abstract (down) The median graph has been shown to be a good choice to infer a representative of a set of graphs. It has been successfully applied to graph-based classification and clustering. Nevertheless, its computation is extremely complex. Several approaches have been presented up to now based on different strategies. In this paper we present a new approximate recursive algorithm for median graph computation based on graph embedding into vector spaces. Preliminary experiments on three databases show that this new approach is able to obtain better medians than the previous existing approaches.
Address Venice, Italy
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-02123-7 Medium
Area Expedition Conference GBR
Notes DAG Approved no
Call Number DAG @ dag @ FKV2009 Serial 1173
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa; K. Riesen; Horst Bunke
Title Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces Type Journal Article
Year 2010 Publication Pattern Recognition Abbreviated Journal PR
Volume 43 Issue 4 Pages 1642–1655
Keywords Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces
Abstract (down) The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ FVS2010 Serial 1294
Permanent link to this record