|   | 
Details
   web
Records
Author Susana Alvarez
Title Revisión de la teoría de los Textons Enfoque computacional en color Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) El color y la textura son dos estímulos visuales importantes para la interpretación de las imágenes. La definición de descriptores computacionales que combinan estas dos características es aún un problema abierto. La dificultad se deriva esencialmente de la propia naturaleza de ambas, mientras que la textura es una propiedad de una región, el color es una propiedad de un punto.

Hasta ahora se han utilizado tres los tipos de aproximaciones para la combinación, (a) se describe la textura directamente en cada uno de los canales color, (b) se describen textura y color por separado y se combinan al final, y (c) la combinación se realiza con técnicas de aprendizaje automático. Considerando que este problema se resuelve en el sistema visual humano en niveles muy tempranos, en esta tesis se propone estudiar el problema a partir de la implementación directa de una teoría perceptual, la teoría de los textons, y explorar así su extensión a color.

Puesto que la teoría de los textons se basa en la descripción de la textura a partir de las densidades de los atributos locales, esto se adapta perfectamente al marco de trabajo de los descriptores holísticos (bag-of-words). Se han estudiado diversos descriptores basados en diferentes espacios de textons, y diferentes representaciones de las imágenes. Asimismo se ha estudiado la viabilidad de estos descriptores en una representación conceptual de nivel intermedio.

Los descriptores propuestos han demostrado ser muy eficientes en aplicaciones de recuperación y clasificación de imágenes, presentando ventajas en la generación de vocabularios. Los vocabularios se obtienen cuantificando directamente espacios de baja dimensión y la perceptualidad de estos espacios permite asociar semántica de bajo nivel a las palabras visuales. El estudio de los resultados permite concluir que si bien la aproximación holística es muy eficiente, la introducción de co-ocurrencia espacial de las propiedades de forma y color de los blobs de la imagen es un elemento clave para su combinación, hecho que no contradice las evidencias en percepción
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Maria Vanrell;Xavier Otazu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Alv2012b Serial 2216
Permanent link to this record
 

 
Author Xavier Baro
Title Probabilistic Darwin Machines: A New Approach to Develop Evolutionary Object Detection Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Ever since computers were invented, we have wondered whether they might perform some of the human quotidian tasks. One of the most studied and still nowadays less understood problem is the capacity to learn from our experiences and how we generalize the knowledge that we acquire. One of that unaware tasks for the persons and that more interest is awakening in different scientific areas since the beginning, is the one that is known as pattern recognition. The creation of models that represent the world that surrounds us, help us for recognizing objects in our environment, to predict situations, to identify behaviors... All this information allows us to adapt ourselves and to interact with our environment. The capacity of adaptation of individuals to their environment has been related to the amount of patterns that are capable of identifying.

This thesis faces the pattern recognition problem from a Computer Vision point of view, taking one of the most paradigmatic and extended approaches to object detection as starting point. After studying this approach, two weak points are identified: The first makes reference to the description of the objects, and the second is a limitation of the learning algorithm, which hampers the utilization of best descriptors.

In order to address the learning limitations, we introduce evolutionary computation techniques to the classical object detection approach.

After testing the classical evolutionary approaches, such as genetic algorithms, we develop a new learning algorithm based on Probabilistic Darwin Machines, which better adapts to the learning problem. Once the learning limitation is avoided, we introduce a new feature set, which maintains the benefits of the classical feature set, adding the ability to describe non localities. This combination of evolutionary learning algorithm and features is tested on different public data sets, outperforming the results obtained by the classical approach.
Address Barcelona (Spain)
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Vitria
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR;HuPBA;MV Approved no
Call Number BCNPCL @ bcnpcl @ Bar2009 Serial 1262
Permanent link to this record
 

 
Author Onur Ferhat
Title Analysis of Head-Pose Invariant, Natural Light Gaze Estimation Methods Type Book Whole
Year 2017 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Eye tracker devices have traditionally been only used inside laboratories, requiring trained professionals and elaborate setup mechanisms. However, in the recent years the scientific work on easier–to–use eye trackers which require no special hardware—other than the omnipresent front facing cameras in computers, tablets, and mobiles—is aiming at making this technology common–place. These types of trackers have several extra challenges that make the problem harder, such as low resolution images provided by a regular webcam, the changing ambient lighting conditions, personal appearance differences, changes in head pose, and so on. Recent research in the field has focused on all these challenges in order to provide better gaze estimation performances in a real world setup.

In this work, we aim at tackling the gaze tracking problem in a single camera setup. We first analyze all the previous work in the field, identifying the strengths and weaknesses of each tried idea. We start our work on the gaze tracker with an appearance–based gaze estimation method, which is the simplest idea that creates a direct mapping between a rectangular image patch extracted around the eye in a camera image, and the gaze point (or gaze direction). Here, we do an extensive analysis of the factors that affect the performance of this tracker in several experimental setups, in order to address these problems in future works. In the second part of our work, we propose a feature–based gaze estimation method, which encodes the eye region image into a compact representation. We argue that this type of representation is better suited to dealing with head pose and lighting condition changes, as it both reduces the dimensionality of the input (i.e. eye image) and breaks the direct connection between image pixel intensities and the gaze estimation. Lastly, we use a face alignment algorithm to have robust face pose estimation, using a 3D model customized to the subject using the tracker. We combine this with a convolutional neural network trained on a large dataset of images to build a face pose invariant gaze tracker.
Address September 2017
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Fernando Vilariño
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-945373-5-6 Medium
Area Expedition Conference
Notes MV Approved no
Call Number Admin @ si @ Fer2017 Serial 3018
Permanent link to this record
 

 
Author Jose Carlos Rubio
Title Many-to-Many High Order Matching. Applications to Tracking and Object Segmentation Type Book Whole
Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Feature matching is a fundamental problem in Computer Vision, having multiple applications such as tracking, image classification and retrieval, shape recognition and stereo fusion. In numerous domains, it is useful to represent the local structure of the matching features to increase the matching accuracy or to make the correspondence invariant to certain transformations (affine, homography, etc. . . ). However, encoding this knowledge requires complicating the model by establishing high-order relationships between the model elements, and therefore increasing the complexity of the optimization problem.

The importance of many-to-many matching is sometimes dismissed in the literature. Most methods are restricted to perform one-to-one matching, and are usually validated on synthetic, or non-realistic datasets. In a real challenging environment, with scale, pose and illumination variations of the object of interest, as well as the presence of occlusions, clutter, and noisy observations, many-to-many matching is necessary to achieve satisfactory results. As a consequence, finding the most likely many-to-many correspondence often involves a challenging combinatorial optimization process.

In this work, we design and demonstrate matching algorithms that compute many-to-many correspondences, applied to several challenging problems. Our goal is to make use of high-order representations to improve the expressive power of the matching, at the same time that we make feasible the process of inference or optimization of such models. We effectively use graphical models as our preferred representation because they provide an elegant probabilistic framework to tackle structured prediction problems.

We introduce a matching-based tracking algorithm which performs matching between frames of a video sequence in order to solve the difficult problem of headlight tracking at night-time. We also generalise this algorithm to solve the problem of data association applied to various tracking scenarios. We demonstrate the effectiveness of such approach in real video sequences and we show that our tracking algorithm can be used to improve the accuracy of a headlight classification system.

In the second part of this work, we move from single (point) matching to dense (region) matching and we introduce a new hierarchical image representation. We make use of such model to develop a high-order many-to-many matching between pairs of images. We show that the use of high-order models in comparison to simpler models improves not only the accuracy of the results, but also the convergence speed of the inference algorithm.

Finally, we keep exploiting the idea of region matching to design a fully unsupervised image co-segmentation algorithm that is able to perform competitively with state-of-the-art supervised methods. Our method also overcomes the typical drawbacks of some of the past works, such as avoiding the necessity of variate appearances on the image backgrounds. The region matching in this case is applied to effectively exploit inter-image information. We also extend this work to perform co-segmentation of videos, being the first time that such problem is addressed, as a way to perform video object segmentation
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joan Serrat
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rub2012 Serial 2206
Permanent link to this record
 

 
Author Pau Rodriguez
Title Towards Robust Neural Models for Fine-Grained Image Recognition Type Book Whole
Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Fine-grained recognition, i.e. identifying similar subcategories of the same superclass, is central to human activity. Recognizing a friend, finding bacteria in microscopic imagery, or discovering a new kind of galaxy, are just but few examples. However, fine-grained image recognition is still a challenging computer vision task since the differences between two images of the same category can overwhelm the differences between two images of different fine-grained categories. In this regime, where the difference between two categories resides on subtle input changes, excessively invariant CNNs discard those details that help to discriminate between categories and focus on more obvious changes, yielding poor classification performance.
On the other hand, CNNs with too much capacity tend to memorize instance-specific details, thus causing overfitting. In this thesis,motivated by the
potential impact of automatic fine-grained image recognition, we tackle the previous challenges and demonstrate that proper alignment of the inputs, multiple levels of attention, regularization, and explicitmodeling of the output space, results inmore accurate fine-grained recognitionmodels, that generalize better, and are more robust to intra-class variation. Concretely, we study the different stages of the neural network pipeline: input pre-processing, attention to regions, feature activations, and the label space. In each stage, we address different issues that hinder the recognition performance on various fine-grained tasks, and devise solutions in each chapter: i)We deal with the sensitivity to input alignment on fine-grained human facial motion such as pain. ii) We introduce an attention mechanism to allow CNNs to choose and process in detail the most discriminate regions of the image. iii)We further extend attention mechanisms to act on the network activations,
thus allowing them to correct their predictions by looking back at certain
regions, at different levels of abstraction. iv) We propose a regularization loss to prevent high-capacity neural networks to memorize instance details by means of almost-identical feature detectors. v)We finally study the advantages of explicitly modeling the output space within the error-correcting framework. As a result, in this thesis we demonstrate that attention and regularization seem promising directions to overcome the problems of fine-grained image recognition, as well as proper treatment of the input and the output space.
Address March 2019
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Josep M. Gonfaus;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-948531-3-5 Medium
Area Expedition Conference
Notes ISE; 600.119 Approved no
Call Number Admin @ si @ Rod2019 Serial 3258
Permanent link to this record
 

 
Author Carola Figueroa Flores
Title Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification
Abstract (up) For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
Address March 2021
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-4-7 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Fig2021 Serial 3600
Permanent link to this record
 

 
Author Jose Elias Yauri
Title Deep Learning Based Data Fusion Approaches for the Assessment of Cognitive States on EEG Signals Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) For millennia, the study of the couple brain-mind has fascinated the humanity in order to understand the complex nature of cognitive states. A cognitive state is the state of the mind at a specific time and involves cognition activities to acquire and process information for making a decision, solving a problem, or achieving a goal.
While normal cognitive states assist in the successful accomplishment of tasks; on the contrary, abnormal states of the mind can lead to task failures due to a reduced cognition capability. In this thesis, we focus on the assessment of cognitive states by means of the analysis of ElectroEncephaloGrams (EEG) signals using deep learning methods. EEG records the electrical activity of the brain using a set of electrodes placed on the scalp that output a set of spatiotemporal signals that are expected to be correlated to a specific mental process.
From the point of view of artificial intelligence, any method for the assessment of cognitive states using EEG signals as input should face several challenges. On the one hand, one should determine which is the most suitable approach for the optimal combination of the multiple signals recorded by EEG electrodes. On the other hand, one should have a protocol for the collection of good quality unambiguous annotated data, and an experimental design for the assessment of the generalization and transfer of models. In order to tackle them, first, we propose several convolutional neural architectures to perform data fusion of the signals recorded by EEG electrodes, at raw signal and feature levels. Four channel fusion methods, easy to incorporate into any neural network architecture, are proposed and assessed. Second, we present a method to create an unambiguous dataset for the prediction of cognitive mental workload using serious games and an Airbus-320 flight simulator. Third, we present a validation protocol that takes into account the levels of generalization of models based on the source and amount of test data.
Finally, the approaches for the assessment of cognitive states are applied to two use cases of high social impact: the assessment of mental workload for personalized support systems in the cockpit and the detection of epileptic seizures. The results obtained from the first use case show the feasibility of task transfer of models trained to detect workload in serious games to real flight scenarios. The results from the second use case show the generalization capability of our EEG channel fusion methods at k-fold cross-validation, patient-specific, and population levels.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Aura Hernandez;Debora Gil
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ Yau2023 Serial 3962
Permanent link to this record
 

 
Author Pau Riba
Title Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images Type Book Whole
Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance of leveraging the structural information when understanding images. Usually, graphs have been proposed as a suitable model to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects, or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition applications, there is a need to compare two objects. This operation, which is trivial when considering feature vectors defined in \(\mathbb{R}^n\), is not properly defined for graphs.


In this thesis, we have investigated the importance of the structural information from two perspectives, the traditional graph-based methods and the new advances on Geometric Deep Learning. On the one hand, we explore the problem of defining a graph representation and how to deal with it on a large scale and noisy scenario. On the other hand, Graph Neural Networks are proposed to first redefine a Graph Edit Distance methodologies as a metric learning problem, and second, to apply them in a real use case scenario for the detection of repetitive patterns which define tables in invoice documents. As experimental framework, we have validated the different methodological contributions in the domain of Document Image Analysis and Recognition.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-121011-6-4 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ Rib20 Serial 3478
Permanent link to this record
 

 
Author Edgar Riba
Title Geometric Computer Vision Techniques for Scene Reconstruction Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) From the early stages of Computer Vision, scene reconstruction has been one of the most studied topics leading to a wide variety of new discoveries and applications. Object grasping and manipulation, localization and mapping, or even visual effect generation are different examples of applications in which scene reconstruction has taken an important role for industries such as robotics, factory automation, or audio visual production. However, scene reconstruction is an extensive topic that can be approached in many different ways with already existing solutions that effectively work in controlled environments. Formally, the problem of scene reconstruction can be formulated as a sequence of independent processes which compose a pipeline. In this thesis, we analyse some parts of the reconstruction pipeline from which we contribute with novel methods using Convolutional Neural Networks (CNN) proposing innovative solutions that consider the optimisation of the methods in an end-to-end fashion. First, we review the state of the art of classical local features detectors and descriptors and contribute with two novel methods that inherently improve pre-existing solutions in the scene reconstruction pipeline.

It is a fact that computer science and software engineering are two fields that usually go hand in hand and evolve according to mutual needs making easier the design of complex and efficient algorithms. For this reason, we contribute with Kornia, a library specifically designed to work with classical computer vision techniques along with deep neural networks. In essence, we created a framework that eases the design of complex pipelines for computer vision algorithms so that can be included within neural networks and be used to backpropagate gradients throw a common optimisation framework. Finally, in the last chapter of this thesis we develop the aforementioned concept of designing end-to-end systems with classical projective geometry. Thus, we contribute with a solution to the problem of synthetic view generation by hallucinating novel views from high deformable cloths objects using a geometry aware end-to-end system. To summarize, in this thesis we demonstrate that with a proper design that combine classical geometric computer vision methods with deep learning techniques can lead to improve pre-existing solutions for the problem of scene reconstruction.
Address February 2021
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Daniel Ponsa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ Rib2021 Serial 3610
Permanent link to this record
 

 
Author Lluis Pere de las Heras
Title Relational Models for Visual Understanding of Graphical Documents. Application to Architectural Drawings. Type Book Whole
Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Graphical documents express complex concepts using a visual language. This language consists of a vocabulary (symbols) and a syntax (structural relations between symbols) that articulate a semantic meaning in a certain context. Therefore, the automatic interpretation by computers of these sort of documents entails three main steps: the detection of the symbols, the extraction of the structural relations between these symbols, and the modeling of the knowledge that permits the extraction of the semantics. Di erent domains in graphical documents include: architectural and engineering drawings, maps, owcharts, etc.
Graphics Recognition in particular and Document Image Analysis in general are
born from the industrial need of interpreting a massive amount of digitalized documents after the emergence of the scanner. Although many years have passed, the graphical document understanding problem still seems to be far from being solved. The main reason is that the vast majority of the systems in the literature focus on very speci c problems, where the domain of the document dictates the implementation of the interpretation. As a result, it is dicult to reuse these strategies on di erent data and on di erent contexts, hindering thus the natural progress in the eld.
In this thesis, we face the graphical document understanding problem by proposing several relational models at di erent levels that are designed from a generic perspective. Firstly, we introduce three di erent strategies for the detection of symbols. The fi rst method tackles the problem structurally, wherein general knowledge of the domain guides the detection. The second is a statistical method that learns the graphical appearance of the symbols and easily adapts to the big variability of the problem. The third method is a combination of the previous two methods that inherits their respective strengths, i.e. copes the big variability and does not need annotated data. Secondly, we present two relational strategies that tackle the problem of the visual context extraction. The fi rst one is a full bottom up method that heuristically searches in a graph representation the contextual relations between symbols. Contrarily, the second is syntactic method that models probabilistically the structure of the documents. It automatically learns the model, which guides the inference algorithm to encounter the best structural representation for a given input. Finally, we construct a knowledge-based model consisting of an ontological de nition of the domain and real data. This model permits to perform contextual reasoning and to detect semantic inconsistencies within the data. We evaluate the suitability of the proposed contributions in the framework of floor plan interpretation. Since there is no standard in the modeling of these documents there exists an enormous notation variability from plan to plan in terms of vocabulary and syntax. Therefore, floor plan interpretation is a relevant task in the graphical document understanding problem. It is also worth to mention that we make freely available all the resources used in this thesis {the data, the tool used to generate the data, and the evaluation scripts{ with the aim of fostering research in the graphical document understanding task.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940902-8-8 Medium
Area Expedition Conference
Notes DAG; 600.077 Approved no
Call Number Admin @ si @ Her2014 Serial 2574
Permanent link to this record
 

 
Author Lei Kang
Title Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation Type Book Whole
Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Marçal Rusiñol;Mauricio Villegas
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-0-9 Medium
Area Expedition Conference
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ Kan20 Serial 3482
Permanent link to this record
 

 
Author Jose Antonio Rodriguez
Title Statistical frameworks and prior information modeling in handwritten word-spotting Type Book Whole
Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Handwritten word-spotting (HWS) is the pattern analysis task that consists in finding keywords in handwritten document images. So far, HWS has been applied mostly to historical documents in order to build search engines for such image collections. This thesis addresses the problem of word-spotting for detecting important keywords in business documents. This is a first step towards the process of automatic routing of correspondence based on content.

However, the application of traditional HWS techniques fails for this type of documents. As opposed to historical documents, real business documents present a very high variability in terms of writing styles, spontaneous writing, crossed-out words, spelling mistakes, etc. The main goal of this thesis is the development of pattern recognition techniques that lead to a high-performance HWS system for this challenging type of data.

We develop a statistical framework in which word models are expressed in terms of hidden Markov models and the a priori information is encoded in a universal vocabulary of Gaussian codewords. This systems leads to a very robust performance in word-spotting task. We also find that by constraining the word models to the universal vocabulary, the a priori information of the problem of interest can be exploited for developing new contributions. These include a novel writer adaptation method, a system for searching handwritten words by generating typed text images, and a novel model-based similarity between feature vector sequences.
Address Barcelona (Spain)
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez;Josep Llados;Florent Perronnin
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ Rod2009 Serial 1266
Permanent link to this record
 

 
Author Armin Mehri
Title Deep learning based architectures for cross-domain image processing Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Human vision is restricted to the visual-optical spectrum. Machine vision is not.
Cameras sensitive to diverse infrared spectral bands can improve the capacities of
autonomous systems and provide a comprehensive view. Relevant scene content
can be made visible, particularly in situations when sensors of other modalities,
such as a visual-optical camera, require a source of illumination. As a result, increasing the level of automation not only avoids human errors but also reduces
machine-induced errors. Furthermore, multi-spectral sensor systems with infrared
imagery as one modality are a rich source of information and can conceivably
increase the robustness of many autonomous systems. Robotics, automobiles,
biometrics, security, surveillance, and the military are some examples of fields
that can profit from the use of infrared imagery in their respective applications.
Although multimodal spectral sensors have come a long way, there are still several
bottlenecks that prevent us from combining their output information and using
them as comprehensive images. The primary issue with infrared imaging is the lack
of potential benefits due to their cost influence on sensor resolution, which grows
exponentially with greater resolution. Due to the more costly sensor technology
required for their development, their resolutions are substantially lower than thoseof regular digital cameras.
This thesis aims to improve beyond-visible-spectrum machine vision by integrating multi-modal spectral sensors. The emphasis is on transforming the produced images to enhance their resolution to match expected human perception, bring the color representation close to human understanding of natural color, and improve machine vision application performance. This research focuses mainly on two tasks, image Colorization and Image Super resolution for both single- and cross-domain problems. We first start with an extensive review of the state of the art in both tasks, point out the shortcomings of existing approaches, and then present our solutions to address their limitations. Our solutions demonstrate that low-cost channel information (i.e., visible image) can be used to improve expensive channel
information (i.e., infrared image), resulting in images with higher quality and closer to human perception at a lower cost than a high-cost infrared camera.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-1-5 Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ Meh2023 Serial 3959
Permanent link to this record
 

 
Author Michael Teutsch; Angel Sappa; Riad I. Hammoud
Title Computer Vision in the Infrared Spectrum: Challenges and Approaches Type Book Whole
Year 2021 Publication Synthesis Lectures on Computer Vision Abbreviated Journal
Volume 10 Issue 2 Pages 1-138
Keywords
Abstract (up) Human visual perception is limited to the visual-optical spectrum. Machine vision is not. Cameras sensitive to the different infrared spectra can enhance the abilities of autonomous systems and visually perceive the environment in a holistic way. Relevant scene content can be made visible especially in situations, where sensors of other modalities face issues like a visual-optical camera that needs a source of illumination. As a consequence, not only human mistakes can be avoided by increasing the level of automation, but also machine-induced errors can be reduced that, for example, could make a self-driving car crash into a pedestrian under difficult illumination conditions. Furthermore, multi-spectral sensor systems with infrared imagery as one modality are a rich source of information and can provably increase the robustness of many autonomous systems. Applications that can benefit from utilizing infrared imagery range from robotics to automotive and from biometrics to surveillance. In this book, we provide a brief yet concise introduction to the current state-of-the-art of computer vision and machine learning in the infrared spectrum. Based on various popular computer vision tasks such as image enhancement, object detection, or object tracking, we first motivate each task starting from established literature in the visual-optical spectrum. Then, we discuss the differences between processing images and videos in the visual-optical spectrum and the various infrared spectra. An overview of the current literature is provided together with an outlook for each task. Furthermore, available and annotated public datasets and common evaluation methods and metrics are presented. In a separate chapter, popular applications that can greatly benefit from the use of infrared imagery as a data source are presented and discussed. Among them are automatic target recognition, video surveillance, or biometrics including face recognition. Finally, we conclude with recommendations for well-fitting sensor setups and data processing algorithms for certain computer vision tasks. We address this book to prospective researchers and engineers new to the field but also to anyone who wants to get introduced to the challenges and the approaches of computer vision using infrared images or videos. Readers will be able to start their work directly after reading the book supported by a highly comprehensive backlog of recent and relevant literature as well as related infrared datasets including existing evaluation frameworks. Together with consistently decreasing costs for infrared cameras, new fields of application appear and make computer vision in the infrared spectrum a great opportunity to face nowadays scientific and engineering challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1636392431 Medium
Area Expedition Conference
Notes MSIAU Approved no
Call Number Admin @ si @ TSH2021 Serial 3666
Permanent link to this record
 

 
Author Murad Al Haj
Title Looking at Faces: Detection, Tracking and Pose Estimation Type Book Whole
Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Humans can effortlessly perceive faces, follow them over space and time, and decode their rich content, such as pose, identity and expression. However, despite many decades of research on automatic facial perception in areas like face detection, expression recognition, pose estimation and face recognition, and despite many successes, a complete solution remains elusive. This thesis is dedicated to three problems in automatic face perception, namely face detection, face tracking and pose estimation.

In face detection, an initial simple model is presented that uses pixel-based heuristics to segment skin locations and hand-crafted rules to determine the locations of the faces present in an image. Different colorspaces are studied to judge whether a colorspace transformation can aid skin color detection. The output of this study is used in the design of a more complex face detector that is able to successfully generalize to different scenarios.

In face tracking, a framework that combines estimation and control in a joint scheme is presented to track a face with a single pan-tilt-zoom camera. While this work is mainly motivated by tracking faces, it can be easily applied atop of any detector to track different objects. The applicability of this method is demonstrated on simulated as well as real-life scenarios.

The last and most important part of this thesis is dedicate to monocular head pose estimation. In this part, a method based on partial least squares (PLS) regression is proposed to estimate pose and solve the alignment problem simultaneously. The contributions of this work are two-fold: 1) demonstrating that the proposed method achieves better than state-of-the-art results on the estimation problem and 2) developing a technique to reduce misalignment based on the learned PLS factors that outperform multiple instance learning (MIL) without the need for any re-training or the inclusion of misaligned samples in the training process, as normally done in MIL.
Address Barcelona
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ Haj2013 Serial 2278
Permanent link to this record