|   | 
Details
   web
Records
Author Zhengying Liu; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Sergio Escalera; Adrien Pavao; Hugo Jair Escalante; Wei-Wei Tu; Zhen Xu; Sebastien Treguer
Title AutoCV Challenge Design and Baseline Results Type Conference Article
Year 2019 Publication La Conference sur l’Apprentissage Automatique Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) We present the design and beta tests of a new machine learning challenge called AutoCV (for Automated Computer Vision), which is the first event in a series of challenges we are planning on the theme of Automated Deep Learning. We target applications for which Deep Learning methods have had great success in the past few years, with the aim of pushing the state of the art in fully automated methods to design the architecture of neural networks and train them without any human intervention. The tasks are restricted to multi-label image classification problems, from domains including medical, areal, people, object, and handwriting imaging. Thus the type of images will vary a lot in scales, textures, and structure. Raw data are provided (no features extracted), but all datasets are formatted in a uniform tensor manner (although images may have fixed or variable sizes within a dataset). The participants's code will be blind tested on a challenge platform in a controlled manner, with restrictions on training and test time and memory limitations. The challenge is part of the official selection of IJCNN 2019.
Address Toulouse; Francia; July 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ LGJ2019 Serial 3323
Permanent link to this record
 

 
Author Zhengying Liu; Zhen Xu; Shangeth Rajaa; Meysam Madadi; Julio C. S. Jacques Junior; Sergio Escalera; Adrien Pavao; Sebastien Treguer; Wei-Wei Tu; Isabelle Guyon
Title Towards Automated Deep Learning: Analysis of the AutoDL challenge series 2019 Type Conference Article
Year 2020 Publication Proceedings of Machine Learning Research Abbreviated Journal
Volume 123 Issue Pages 242-252
Keywords
Abstract (up) We present the design and results of recent competitions in Automated Deep Learning (AutoDL). In the AutoDL challenge series 2019, we organized 5 machine learning challenges: AutoCV, AutoCV2, AutoNLP, AutoSpeech and AutoDL. The first 4 challenges concern each a specific application domain, such as computer vision, natural language processing and speech recognition. At the time of March 2020, the last challenge AutoDL is still on-going and we only present its design. Some highlights of this work include: (1) a benchmark suite of baseline AutoML solutions, with emphasis on domains for which Deep Learning methods have had prior success (image, video, text, speech, etc); (2) a novel any-time learning framework, which opens doors for further theoretical consideration; (3) a repository of around 100 datasets (from all above domains) over half of which are released as public datasets to enable research on meta-learning; (4) analyses revealing that winning solutions generalize to new unseen datasets, validating progress towards universal AutoML solution; (5) open-sourcing of the challenge platform, the starting kit, the dataset formatting toolkit, and all winning solutions (All information available at {autodl.chalearn.org}).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NEURIPS
Notes HUPBA Approved no
Call Number Admin @ si @ LXR2020 Serial 3500
Permanent link to this record
 

 
Author Zhengying Liu; Zhen Xu; Sergio Escalera; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Adrien Pavao; Sebastien Treguer; Wei-Wei Tu
Title Towards automated computer vision: analysis of the AutoCV challenges 2019 Type Journal Article
Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 135 Issue Pages 196-203
Keywords Computer vision; AutoML; Deep learning
Abstract (up) We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winners’ performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ LXE2020 Serial 3427
Permanent link to this record
 

 
Author Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi
Title WiCV 2018: The Fourth Women In Computer Vision Workshop Type Conference Article
Year 2018 Publication 4th Women in Computer Vision Workshop Abbreviated Journal
Volume Issue Pages 1941-19412
Keywords Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning
Abstract (up) We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WiCV
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ DBR2018 Serial 3222
Permanent link to this record
 

 
Author Arka Ujjal Dey; Suman Ghosh; Ernest Valveny
Title Don't only Feel Read: Using Scene text to understand advertisements Type Conference Article
Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.
Address Salt Lake City; Utah; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ DGV2018 Serial 3551
Permanent link to this record
 

 
Author Adriana Romero; Petia Radeva; Carlo Gatta
Title Meta-parameter free unsupervised sparse feature learning Type Journal Article
Year 2015 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 37 Issue 8 Pages 1716-1722
Keywords
Abstract (up) We propose a meta-parameter free, off-the-shelf, simple and fast unsupervised feature learning algorithm, which exploits a new way of optimizing for sparsity. Experiments on CIFAR-10, STL- 10 and UCMerced show that the method achieves the state-of-theart performance, providing discriminative features that generalize well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 600.068; 600.079; 601.160 Approved no
Call Number Admin @ si @ RRG2014b Serial 2594
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; Xu Hu; David Vazquez; Antonio Lopez
Title Multi-task Bilinear Classifiers for Visual Domain Adaptation Type Conference Article
Year 2013 Publication Advances in Neural Information Processing Systems Workshop Abbreviated Journal
Volume Issue Pages
Keywords Domain Adaptation; Pedestrian Detection; ADAS
Abstract (up) We propose a method that aims to lessen the significant accuracy degradation
that a discriminative classifier can suffer when it is trained in a specific domain (source domain) and applied in a different one (target domain). The principal reason for this degradation is the discrepancies in the distribution of the features that feed the classifier in different domains. Therefore, we propose a domain adaptation method that maps the features from the different domains into a common subspace and learns a discriminative domain-invariant classifier within it. Our algorithm combines bilinear classifiers and multi-task learning for domain adaptation.
The bilinear classifier encodes the feature transformation and classification
parameters by a matrix decomposition. In this way, specific feature transformations for multiple domains and a shared classifier are jointly learned in a multi-task learning framework. Focusing on domain adaptation for visual object detection, we apply this method to the state-of-the-art deformable part-based model for cross domain pedestrian detection. Experimental results show that our method significantly avoids the domain drift and improves the accuracy when compared to several baselines.
Address Lake Tahoe; Nevada; USA; December 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NIPSW
Notes ADAS; 600.054; 600.057; 601.217;ISE Approved no
Call Number ADAS @ adas @ XRH2013 Serial 2340
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Dimosthenis Karatzas; Damien Muselet
Title Towards multispectral data acquisition with hand-held devices Type Conference Article
Year 2013 Publication 20th IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2053 - 2057
Keywords Multispectral; mobile devices; color measurements
Abstract (up) We propose a method to acquire multispectral data with handheld devices with front-mounted RGB cameras. We propose to use the display of the device as an illuminant while the camera captures images illuminated by the red, green and
blue primaries of the display. Three illuminants and three response functions of the camera lead to nine response values which are used for reflectance estimation. Results are promising and show that the accuracy of the spectral reconstruction improves in the range from 30-40% over the spectral
reconstruction based on a single illuminant. Furthermore, we propose to compute sensor-illuminant aware linear basis by discarding the part of the reflectances that falls in the sensorilluminant null-space. We show experimentally that optimizing reflectance estimation on these new basis functions decreases
the RMSE significantly over basis functions that are independent to sensor-illuminant. We conclude that, multispectral data acquisition is potentially possible with consumer hand-held devices such as tablets, mobiles, and laptops, opening up applications which are currently considered to be unrealistic.
Address Melbourne; Australia; September 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes CIC; DAG; 600.048 Approved no
Call Number Admin @ si @ KWK2013b Serial 2265
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados
Title Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs Type Conference Article
Year 2017 Publication 8th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume Issue Pages
Keywords Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines
Abstract (up) We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction.
Address Faro; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IbPRIA
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ JRL2017a Serial 2953
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer
Title Gated Class-Attention with Cascaded Feature Drift Compensation for Exemplar-free Continual Learning of Vision Transformers Type Miscellaneous
Year 2022 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords Marco Cotogni, Fei Yang, Claudio Cusano, Andrew D. Bagdanov, Joost van de Weijer
Abstract (up) We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; no proj Approved no
Call Number Admin @ si @ CYC2022 Serial 3827
Permanent link to this record
 

 
Author Marco Cotogni; Fei Yang; Claudio Cusano; Andrew Bagdanov; Joost Van de Weijer
Title Exemplar-free Continual Learning of Vision Transformers via Gated Class-Attention and Cascaded Feature Drift Compensation Type Miscellaneous
Year 2023 Publication ARXIV Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) We propose a new method for exemplar-free class incremental training of ViTs. The main challenge of exemplar-free continual learning is maintaining plasticity of the learner without causing catastrophic forgetting of previously learned tasks. This is often achieved via exemplar replay which can help recalibrate previous task classifiers to the feature drift which occurs when learning new tasks. Exemplar replay, however, comes at the cost of retaining samples from previous tasks which for many applications may not be possible. To address the problem of continual ViT training, we first propose gated class-attention to minimize the drift in the final ViT transformer block. This mask-based gating is applied to class-attention mechanism of the last transformer block and strongly regulates the weights crucial for previous tasks. Importantly, gated class-attention does not require the task-ID during inference, which distinguishes it from other parameter isolation methods. Secondly, we propose a new method of feature drift compensation that accommodates feature drift in the backbone when learning new tasks. The combination of gated class-attention and cascaded feature drift compensation allows for plasticity towards new tasks while limiting forgetting of previous ones. Extensive experiments performed on CIFAR-100, Tiny-ImageNet and ImageNet100 demonstrate that our exemplar-free method obtains competitive results when compared to rehearsal based ViT methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ CYC2023 Serial 3981
Permanent link to this record
 

 
Author Xialei Liu; Joost Van de Weijer; Andrew Bagdanov
Title RankIQA: Learning from Rankings for No-reference Image Quality Assessment Type Conference Article
Year 2017 Publication 17th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) We propose a no-reference image quality assessment (NR-IQA) approach that learns from rankings (RankIQA). To address the problem of limited IQA dataset size, we train a Siamese Network to rank images in terms of image quality by using synthetically generated distortions for which relative image quality is known. These ranked image sets can be automatically generated without laborious human labeling. We then use fine-tuning to transfer the knowledge represented in the trained Siamese Network to a traditional CNN that estimates absolute image quality from single images. We demonstrate how our approach can be made significantly more efficient than traditional Siamese Networks by forward propagating a batch of images through a single network and backpropagating gradients derived from all pairs of images in the batch. Experiments on the TID2013 benchmark show that we improve the state-of-the-art by over 5%. Furthermore, on the LIVE benchmark we show that our approach is superior to existing NR-IQA techniques and that we even outperform the state-of-the-art in full-reference IQA (FR-IQA) methods without having to resort to high-quality reference images to infer IQA.
Address Venice; Italy; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP; 600.106; 600.109; 600.120 Approved no
Call Number Admin @ si @ LWB2017b Serial 3036
Permanent link to this record
 

 
Author Pau Rodriguez; Josep M. Gonfaus; Guillem Cucurull; Xavier Roca; Jordi Gonzalez
Title Attend and Rectify: A Gated Attention Mechanism for Fine-Grained Recovery Type Conference Article
Year 2018 Publication 15th European Conference on Computer Vision Abbreviated Journal
Volume 11212 Issue Pages 357-372
Keywords Deep Learning; Convolutional Neural Networks; Attention
Abstract (up) We propose a novel attention mechanism to enhance Convolutional Neural Networks for fine-grained recognition. It learns to attend to lower-level feature activations without requiring part annotations and uses these activations to update and rectify the output likelihood distribution. In contrast to other approaches, the proposed mechanism is modular, architecture-independent and efficient both in terms of parameters and computation required. Experiments show that networks augmented with our approach systematically improve their classification accuracy and become more robust to clutter. As a result, Wide Residual Networks augmented with our proposal surpasses the state of the art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford dogs, and UEC Food-100.
Address Munich; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes ISE; 600.098; 602.121; 600.119 Approved no
Call Number Admin @ si @ RGC2018 Serial 3139
Permanent link to this record
 

 
Author Xialei Liu; Joost Van de Weijer; Andrew Bagdanov
Title Leveraging Unlabeled Data for Crowd Counting by Learning to Rank Type Conference Article
Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 7661 - 7669
Keywords Task analysis; Training; Computer vision; Visualization; Estimation; Head; Context modeling
Abstract (up) We propose a novel crowd counting approach that leverages abundantly available unlabeled crowd imagery in a learning-to-rank framework. To induce a ranking of
cropped images , we use the observation that any sub-image of a crowded scene image is guaranteed to contain the same number or fewer persons than the super-image. This allows us to address the problem of limited size of existing
datasets for crowd counting. We collect two crowd scene datasets from Google using keyword searches and queryby-example image retrieval, respectively. We demonstrate how to efficiently learn from these unlabeled datasets by incorporating learning-to-rank in a multi-task network which simultaneously ranks images and estimates crowd density maps. Experiments on two of the most challenging crowd counting datasets show that our approach obtains state-ofthe-art results.
Address Salt Lake City; USA; June 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.109; 600.106; 600.120 Approved no
Call Number Admin @ si @ LWB2018 Serial 3159
Permanent link to this record
 

 
Author Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu
Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2558-2562
Keywords
Abstract (up) We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.
Address Beijing; China; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ VRM2017 Serial 2898
Permanent link to this record