|   | 
Details
   web
Records
Author Carles Sanchez;F. Javier Sanchez; Antoni Rosell; Debora Gil
Title An illumination model of the trachea appearance in videobronchoscopy images Type Book Chapter
Year 2012 Publication Image Analysis and Recognition Abbreviated Journal LNCS
Volume 7325 Issue Pages 313-320
Keywords Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation
Abstract (up) Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium
Area 800 Expedition Conference ICIAR
Notes MV;IAM Approved no
Call Number IAM @ iam @ SSR2012 Serial 1898
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title BronchoX: bronchoscopy exploration software for biopsy intervention planning Type Journal
Year 2018 Publication Healthcare Technology Letters Abbreviated Journal HTL
Volume 5 Issue 5 Pages 177–182
Keywords
Abstract (up) Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.
Address
Corporate Author rank (SJR) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.096; 600.075; 601.323; 601.337; 600.145 Approved no
Call Number Admin @ si @ RSB2018a Serial 3132
Permanent link to this record
 

 
Author Ali Furkan Biten
Title A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-5-5 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ Bit2022 Serial 3755
Permanent link to this record
 

 
Author David Dueñas; Mostafa Kamal; Petia Radeva
Title Efficient Deep Learning Ensemble for Skin Lesion Classification Type Conference Article
Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages 303-314
Keywords
Abstract (up) Vision Transformers (ViTs) are deep learning techniques that have been gaining in popularity in recent years.
In this work, we study the performance of ViTs and Convolutional Neural Networks (CNNs) on skin lesions classification tasks, specifically melanoma diagnosis. We show that regardless of the performance of both architectures, an ensemble of them can improve their generalization. We also present an adaptation to the Gram-OOD* method (detecting Out-of-distribution (OOD) using Gram matrices) for skin lesion images. Moreover, the integration of super-convergence was critical to success in building models with strict computing and training time constraints. We evaluated our ensemble of ViTs and CNNs, demonstrating that generalization is enhanced by placing first in the 2019 and third in the 2020 ISIC Challenge Live Leaderboards
(available at https://challenge.isic-archive.com/leaderboards/live/).
Address Lisboa; Portugal; February 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MILAB Approved no
Call Number Admin @ si @ DKR2023 Serial 3928
Permanent link to this record
 

 
Author Juan Borrego-Carazo; Carles Sanchez; David Castells; Jordi Carrabina; Debora Gil
Title BronchoPose: an analysis of data and model configuration for vision-based bronchoscopy pose estimation Type Journal Article
Year 2023 Publication Computer Methods and Programs in Biomedicine Abbreviated Journal CMPB
Volume 228 Issue Pages 107241
Keywords Videobronchoscopy guiding; Deep learning; Architecture optimization; Datasets; Standardized evaluation framework; Pose estimation
Abstract (up) Vision-based bronchoscopy (VB) models require the registration of the virtual lung model with the frames from the video bronchoscopy to provide effective guidance during the biopsy. The registration can be achieved by either tracking the position and orientation of the bronchoscopy camera or by calibrating its deviation from the pose (position and orientation) simulated in the virtual lung model. Recent advances in neural networks and temporal image processing have provided new opportunities for guided bronchoscopy. However, such progress has been hindered by the lack of comparative experimental conditions.
In the present paper, we share a novel synthetic dataset allowing for a fair comparison of methods. Moreover, this paper investigates several neural network architectures for the learning of temporal information at different levels of subject personalization. In order to improve orientation measurement, we also present a standardized comparison framework and a novel metric for camera orientation learning. Results on the dataset show that the proposed metric and architectures, as well as the standardized conditions, provide notable improvements to current state-of-the-art camera pose estimation in video bronchoscopy.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number Admin @ si @ BSC2023 Serial 3702
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa
Title Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Conference Article
Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3492 - 3495
Keywords Pedestrian Detection; Domain Adaptation; Virtual worlds
Abstract (up) Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).
Address Tsukuba Science City, Japan
Corporate Author Thesis
Publisher IEEE Place of Publication Tsukuba Science City, JAPAN Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium
Area Expedition Conference ICPR
Notes ADAS Approved no
Call Number ADAS @ adas @ VLP2012 Serial 1981
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez
Title Road Geometry Classification by Adaptative Shape Models Type Journal Article
Year 2013 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 14 Issue 1 Pages 459-468
Keywords road detection
Abstract (up) Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS;ISE Approved no
Call Number Admin @ si @ AGD2013;; ADAS @ adas @ Serial 2269
Permanent link to this record
 

 
Author Jose Manuel Alvarez; Theo Gevers; Antonio Lopez
Title 3D Scene Priors for Road Detection Type Conference Article
Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 57–64
Keywords road detection
Abstract (up) Vision-based road detection is important in different areas of computer vision such as autonomous driving, car collision warning and pedestrian crossing detection. However, current vision-based road detection methods are usually based on low-level features and they assume structured roads, road homogeneity, and uniform lighting conditions. Therefore, in this paper, contextual 3D information is used in addition to low-level cues. Low-level photometric invariant cues are derived from the appearance of roads. Contextual cues used include horizon lines, vanishing points, 3D scene layout and 3D road stages. Moreover, temporal road cues are included. All these cues are sensitive to different imaging conditions and hence are considered as weak cues. Therefore, they are combined to improve the overall performance of the algorithm. To this end, the low-level, contextual and temporal cues are combined in a Bayesian framework to classify road sequences. Large scale experiments on road sequences show that the road detection method is robust to varying imaging conditions, road types, and scenarios (tunnels, urban and highway). Further, using the combined cues outperforms all other individual cues. Finally, the proposed method provides highest road detection accuracy when compared to state-of-the-art methods.
Address San Francisco; CA; USA; June 2010
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium
Area Expedition Conference CVPR
Notes ADAS;ISE Approved no
Call Number ADAS @ adas @ AGL2010a Serial 1302
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Gabriel Villalonga; Elias Maidanik; Francisco Molero; Marc Garcia; Adriana Cedeño; Francisco Perez; Didier Ramirez; Eduardo Escobar; Jose Luis Gomez; David Vazquez; Antonio Lopez
Title Semantic Segmentation of Urban Scenes via Domain Adaptation of SYNTHIA Type Book Chapter
Year 2017 Publication Domain Adaptation in Computer Vision Applications Abbreviated Journal
Volume 12 Issue Pages 227-241
Keywords SYNTHIA; Virtual worlds; Autonomous Driving
Abstract (up) Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. Recent revolutionary results of deep convolutional neural networks (DCNNs) foreshadow the advent of reliable classifiers to perform such visual tasks. However, DCNNs require learning of many parameters from raw images; thus, having a sufficient amount of diverse images with class annotations is needed. These annotations are obtained via cumbersome, human labour which is particularly challenging for semantic segmentation since pixel-level annotations are required. In this chapter, we propose to use a combination of a virtual world to automatically generate realistic synthetic images with pixel-level annotations, and domain adaptation to transfer the models learnt to correctly operate in real scenarios. We address the question of how useful synthetic data can be for semantic segmentation – in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic collection of diverse urban images, named SYNTHIA, with automatically generated class annotations and object identifiers. We use SYNTHIA in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments with DCNNs that show that combining SYNTHIA with simple domain adaptation techniques in the training stage significantly improves performance on semantic segmentation.
Address
Corporate Author Thesis
Publisher Springer Place of Publication Editor Gabriela Csurka
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.082; 600.076; 600.118 Approved no
Call Number ADAS @ adas @ RSV2017 Serial 2882
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Joanna Materzynska; David Vazquez; Antonio Lopez
Title The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes Type Conference Article
Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 3234-3243
Keywords Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
Abstract (up) Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Address Las Vegas; USA; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ RSM2016 Serial 2739
Permanent link to this record
 

 
Author Koen E.A. van de Sande; Theo Gevers; Cees G.M. Snoek
Title Empowering Visual Categorization with the GPU Type Journal Article
Year 2011 Publication IEEE Transactions on Multimedia Abbreviated Journal TMM
Volume 13 Issue 1 Pages 60-70
Keywords
Abstract (up) Visual categorization is important to manage large collections of digital images and video, where textual meta-data is often incomplete or simply unavailable. The bag-of-words model has become the most powerful method for visual categorization of images and video. Despite its high accuracy, a severe drawback of this model is its high computational cost. As the trend to increase computational power in newer CPU and GPU architectures is to increase their level of parallelism, exploiting this parallelism becomes an important direction to handle the computational cost of the bag-of-words approach. When optimizing a system based on the bag-of-words approach, the goal is to minimize the time it takes to process batches of images. Additionally, we also consider power usage as an evaluation metric. In this paper, we analyze the bag-of-words model for visual categorization in terms of computational cost and identify two major bottlenecks: the quantization step and the classification step. We address these two bottlenecks by proposing two efficient algorithms for quantization and classification by exploiting the GPU hardware and the CUDA parallel programming model. The algorithms are designed to (1) keep categorization accuracy intact, (2) decompose the problem and (3) give the same numerical results. In the experiments on large scale datasets it is shown that, by using a parallel implementation on the Geforce GTX260 GPU, classifying unseen images is 4.8 times faster than a quad-core CPU version on the Core i7 920, while giving the exact same numerical results. In addition, we show how the algorithms can be generalized to other applications, such as text retrieval and video retrieval. Moreover, when the obtained speedup is used to process extra video frames in a video retrieval benchmark, the accuracy of visual categorization is improved by 29%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ SGS2011b Serial 1729
Permanent link to this record
 

 
Author Mingyi Yang; Luis Herranz; Fei Yang; Luka Murn; Marc Gorriz Blanch; Shuai Wan; Fuzheng Yang; Marta Mrak
Title Semantic Preprocessor for Image Compression for Machines Type Conference Article
Year 2023 Publication IEEE International Conference on Acoustics, Speech and Signal Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Visual content is being increasingly transmitted and consumed by machines rather than humans to perform automated content analysis tasks. In this paper, we propose an image preprocessor that optimizes the input image for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. To achieve a better trade-off between the accuracy of the machine analysis task and bitrate, we propose leveraging pre-extracted semantic information to improve the preprocessor’s ability to accurately identify and filter out task-irrelevant information. Furthermore, we propose a two-part loss function to optimize the preprocessor, consisted of a rate-task performance loss and a semantic distillation loss, which helps the reconstructed image obtain more information that contributes to the accuracy of the task. Experiments show that the proposed preprocessor can save up to 48.83% bitrate compared with the method without the preprocessor, and save up to 36.24% bitrate compared to existing preprocessors for machine vision.
Address Rodhes Islands; Greece; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICASSP
Notes MACO; LAMP Approved no
Call Number Admin @ si @ YHY2023 Serial 3912
Permanent link to this record
 

 
Author Mingyi Yang; Fei Yang; Luka Murn; Marc Gorriz Blanch; Juil Sock; Shuai Wan; Fuzheng Yang; Luis Herranz
Title Task-Switchable Pre-Processor for Image Compression for Multiple Machine Vision Tasks Type Journal Article
Year 2024 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal
Volume Issue Pages
Keywords M Yang, F Yang, L Murn, MG Blanch, J Sock, S Wan, F Yang, L Herranz
Abstract (up) Visual content is increasingly being processed by machines for various automated content analysis tasks instead of being consumed by humans. Despite the existence of several compression methods tailored for machine tasks, few consider real-world scenarios with multiple tasks. In this paper, we aim to address this gap by proposing a task-switchable pre-processor that optimizes input images specifically for machine consumption prior to encoding by an off-the-shelf codec designed for human consumption. The proposed task-switchable pre-processor adeptly maintains relevant semantic information based on the specific characteristics of different downstream tasks, while effectively suppressing irrelevant information to reduce bitrate. To enhance the processing of semantic information for diverse tasks, we leverage pre-extracted semantic features to modulate the pixel-to-pixel mapping within the pre-processor. By switching between different modulations, multiple tasks can be seamlessly incorporated into the system. Extensive experiments demonstrate the practicality and simplicity of our approach. It significantly reduces the number of parameters required for handling multiple tasks while still delivering impressive performance. Our method showcases the potential to achieve efficient and effective compression for machine vision tasks, supporting the evolving demands of real-world applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes xxx Approved no
Call Number Admin @ si @ YYM2024 Serial 4007
Permanent link to this record
 

 
Author Sergi Garcia Bordils; George Tom; Sangeeth Reddy; Minesh Mathew; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas
Title Read While You Drive-Multilingual Text Tracking on the Road Type Conference Article
Year 2022 Publication 15th IAPR International workshop on document analysis systems Abbreviated Journal
Volume 13237 Issue Pages 756–770
Keywords
Abstract (up) Visual data obtained during driving scenarios usually contain large amounts of text that conveys semantic information necessary to analyse the urban environment and is integral to the traffic control plan. Yet, research on autonomous driving or driver assistance systems typically ignores this information. To advance research in this direction, we present RoadText-3K, a large driving video dataset with fully annotated text. RoadText-3K is three times bigger than its predecessor and contains data from varied geographical locations, unconstrained driving conditions and multiple languages and scripts. We offer a comprehensive analysis of tracking by detection and detection by tracking methods exploring the limits of state-of-the-art text detection. Finally, we propose a new end-to-end trainable tracking model that yields state-of-the-art results on this challenging dataset. Our experiments demonstrate the complexity and variability of RoadText-3K and establish a new, realistic benchmark for scene text tracking in the wild.
Address La Rochelle; France; May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06554-5 Medium
Area Expedition Conference DAS
Notes DAG; 600.155; 611.022; 611.004 Approved no
Call Number Admin @ si @ GTR2022 Serial 3783
Permanent link to this record
 

 
Author Alex Gomez-Villa; Adrian Martin; Javier Vazquez; Marcelo Bertalmio; Jesus Malo
Title On the synthesis of visual illusions using deep generative models Type Journal Article
Year 2022 Publication Journal of Vision Abbreviated Journal JOV
Volume 22(8) Issue 2 Pages 1-18
Keywords
Abstract (up) Visual illusions expand our understanding of the visual system by imposing constraints in the models in two different ways: i) visual illusions for humans should induce equivalent illusions in the model, and ii) illusions synthesized from the model should be compelling for human viewers too. These constraints are alternative strategies to find good vision models. Following the first research strategy, recent studies have shown that artificial neural network architectures also have human-like illusory percepts when stimulated with classical hand-crafted stimuli designed to fool humans. In this work we focus on the second (less explored) strategy: we propose a framework to synthesize new visual illusions using the optimization abilities of current automatic differentiation techniques. The proposed framework can be used with classical vision models as well as with more recent artificial neural network architectures. This framework, validated by psychophysical experiments, can be used to study the difference between a vision model and the actual human perception and to optimize the vision model to decrease this difference.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.161; 611.007 Approved no
Call Number Admin @ si @ GMV2022 Serial 3682
Permanent link to this record