|   | 
Details
   web
Records
Author Albert Gordo; Florent Perronnin; Ernest Valveny
Title Large-scale document image retrieval and classification with runlength histograms and binary embeddings Type Journal Article
Year 2013 Publication Pattern Recognition Abbreviated Journal PR
Volume 46 Issue 7 Pages 1898-1905
Keywords visual document descriptor; compression; large-scale; retrieval; classification
Abstract (down) We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG; 600.042; 600.045; 605.203 Approved no
Call Number Admin @ si @ GPV2013 Serial 2306
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal
Volume 40 Issue 6 Pages 1-14
Keywords
Abstract (down) We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ BME2021c Serial 3643
Permanent link to this record
 

 
Author Marco Pedersoli; Andrea Vedaldi; Jordi Gonzalez; Xavier Roca
Title A coarse-to-fine approach for fast deformable object detection Type Journal Article
Year 2015 Publication Pattern Recognition Abbreviated Journal PR
Volume 48 Issue 5 Pages 1844-1853
Keywords
Abstract (down) We present a method that can dramatically accelerate object detection with part based models. The method is based on the observation that the cost of detection is likely to be dominated by the cost of matching each part to the image, and not by the cost of computing the optimal configuration of the parts as commonly assumed. Therefore accelerating detection requires minimizing the number of
part-to-image comparisons. To this end we propose a multiple-resolutions hierarchical part based model and a corresponding coarse-to-fine inference procedure that recursively eliminates from the search space unpromising part
placements. The method yields a ten-fold speedup over the standard dynamic programming approach and is complementary to the cascade-of-parts approach of [9]. Compared to the latter, our method does not have parameters to be determined empirically, which simplifies its use during the training of the model. Most importantly, the two techniques can be combined to obtain a very significant speedup, of two orders of magnitude in some cases. We evaluate our method extensively on the PASCAL VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little degradation of the accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078; 602.005; 605.001; 302.012 Approved no
Call Number Admin @ si @ PVG2015 Serial 2628
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Antonio Lopez
Title Cost estimation of custom hoses from STL files and CAD drawings Type Journal Article
Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND
Volume 64 Issue 3 Pages 299-309
Keywords On-line quotation; STL format; Regression; Gaussian process
Abstract (down) We present a method for the cost estimation of custom hoses from CAD models. They can come in two formats, which are easy to generate: a STL file or the image of a CAD drawing showing several orthogonal projections. The challenges in either cases are, first, to obtain from them a high level 3D description of the shape, and second, to learn a regression function for the prediction of the manufacturing time, based on geometric features of the reconstructed shape. The chosen description is the 3D line along the medial axis of the tube and the diameter of the circular sections along it. In order to extract it from STL files, we have adapted RANSAC, a robust parametric fitting algorithm. As for CAD drawing images, we propose a new technique for 3D reconstruction from data entered on any number of orthogonal projections. The regression function is a Gaussian process, which does not constrain the function to adopt any specific form and is governed by just two parameters. We assess the accuracy of the manufacturing time estimation by k-fold cross validation on 171 STL file models for which the time is provided by an expert. The results show the feasibility of the method, whereby the relative error for 80% of the testing samples is below 15%.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.057; 600.054; 605.203 Approved no
Call Number Admin @ si @ SLL2013; ADAS @ adas @ Serial 2161
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera
Title Neural Cloth Simulation Type Journal Article
Year 2022 Publication ACM Transactions on Graphics Abbreviated Journal ACMTGraph
Volume 41 Issue 6 Pages 1-14
Keywords
Abstract (down) We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.



ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
Address Dec 2022
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ BME2022b Serial 3779
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Carlo Gatta; Marina Alberti; Simone Balocco; Xavier Carrillo; J. Mauri; Petia Radeva
Title HoliMab: A Holistic Approach for Media-Adventitia Border Detection in Intravascular Ultrasound Type Journal Article
Year 2012 Publication Medical Image Analysis Abbreviated Journal MIA
Volume 16 Issue 6 Pages 1085-1100
Keywords Media–Adventitia border detection; Intravascular ultrasound; Multi-Scale Stacked Sequential Learning; Error-correcting output codes; Holistic segmentation
Abstract (down) We present a fully automatic methodology for the detection of the Media-Adventitia border (MAb) in human coronary artery in Intravascular Ultrasound (IVUS) images. A robust border detection is achieved by means of a holistic interpretation of the detection problem where the target object, i.e. the media layer, is considered as part of the whole vessel in the image and all the relationships between tissues are learnt. A fairly general framework exploiting multi-class tissue characterization as well as contextual information on the morphology and the appearance of the tissues is presented. The methodology is (i) validated through an exhaustive comparison with both Inter-observer variability on two challenging databases and (ii) compared with state-of-the-art methods for the detection of the MAb in IVUS. The obtained averaged values for the mean radial distance and the percentage of area difference are 0.211 mm and 10.1%, respectively. The applicability of the proposed methodology to clinical practice is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ CPG2012 Serial 1995
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Sergio Escalera; Roger Gimeno; Oscar Vilarroya; Petia Radeva
Title Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder Type Journal Article
Year 2012 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG
Volume 36 Issue 8 Pages 591-600
Keywords Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles
Abstract (down) We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; HuPBA; MILAB Approved no
Call Number Admin @ si @ ISE2012 Serial 2143
Permanent link to this record
 

 
Author Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera
Title Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization Type Journal Article
Year 2012 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal JAISE
Volume 4 Issue 6 Pages 535-546
Keywords Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation
Abstract (down) We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1876-1364 ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ HZM2012a Serial 2006
Permanent link to this record
 

 
Author Mariella Dimiccoli
Title Figure-ground segregation: A fully nonlocal approach Type Journal Article
Year 2016 Publication Vision Research Abbreviated Journal VR
Volume 126 Issue Pages 308-317
Keywords Figure-ground segregation; Nonlocal approach; Directional linear voting; Nonlinear diffusion
Abstract (down) We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; Approved no
Call Number Admin @ si @ Dim2016b Serial 2623
Permanent link to this record
 

 
Author Stefan Lonn; Petia Radeva; Mariella Dimiccoli
Title Smartphone picture organization: A hierarchical approach Type Journal Article
Year 2019 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 187 Issue Pages 102789
Keywords
Abstract (down) We live in a society where the large majority of the population has a camera-equipped smartphone. In addition, hard drives and cloud storage are getting cheaper and cheaper, leading to a tremendous growth in stored personal photos. Unlike photo collections captured by a digital camera, which typically are pre-processed by the user who organizes them into event-related folders, smartphone pictures are automatically stored in the cloud. As a consequence, photo collections captured by a smartphone are highly unstructured and because smartphones are ubiquitous, they present a larger variability compared to pictures captured by a digital camera. To solve the need of organizing large smartphone photo collections automatically, we propose here a new methodology for hierarchical photo organization into topics and topic-related categories. Our approach successfully estimates latent topics in the pictures by applying probabilistic Latent Semantic Analysis, and automatically assigns a name to each topic by relying on a lexical database. Topic-related categories are then estimated by using a set of topic-specific Convolutional Neuronal Networks. To validate our approach, we ensemble and make public a large dataset of more than 8,000 smartphone pictures from 40 persons. Experimental results demonstrate major user satisfaction with respect to state of the art solutions in terms of organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ LRD2019 Serial 3297
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Debora Gil; Cristina Rodriguez de Miguel; Fernando Vilariño
Title WM-DOVA Maps for Accurate Polyp Highlighting in Colonoscopy: Validation vs. Saliency Maps from Physicians Type Journal Article
Year 2015 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG
Volume 43 Issue Pages 99-111
Keywords Polyp localization; Energy Maps; Colonoscopy; Saliency; Valley detection
Abstract (down) We introduce in this paper a novel polyp localization method for colonoscopy videos. Our method is based on a model of appearance for polyps which defines polyp boundaries in terms of valley information. We propose the integration of valley information in a robust way fostering complete, concave and continuous boundaries typically associated to polyps. This integration is done by using a window of radial sectors which accumulate valley information to create WMDOVA1 energy maps related with the likelihood of polyp presence. We perform a double validation of our maps, which include the introduction of two new databases, including the first, up to our knowledge, fully annotated database with clinical metadata associated. First we assess that the highest value corresponds with the location of the polyp in the image. Second, we show that WM-DOVA energy maps can be comparable with saliency maps obtained from physicians' fixations obtained via an eye-tracker. Finally, we prove that our method outperforms state-of-the-art computational saliency results. Our method shows good performance, particularly for small polyps which are reported to be the main sources of polyp miss-rate, which indicates the potential applicability of our method in clinical practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0895-6111 ISBN Medium
Area Expedition Conference
Notes MV; IAM; 600.047; 600.060; 600.075;SIAI Approved no
Call Number Admin @ si @ BSF2015 Serial 2609
Permanent link to this record
 

 
Author David Masip; Michael S. North ; Alexander Todorov; Daniel N. Osherson
Title Automated Prediction of Preferences Using Facial Expressions Type Journal Article
Year 2014 Publication PloS one Abbreviated Journal Plos
Volume 9 Issue 2 Pages e87434
Keywords
Abstract (down) We introduce a computer vision problem from social cognition, namely, the automated detection of attitudes from a person's spontaneous facial expressions. To illustrate the challenges, we introduce two simple algorithms designed to predict observers’ preferences between images (e.g., of celebrities) based on covert videos of the observers’ faces. The two algorithms are almost as accurate as human judges performing the same task but nonetheless far from perfect. Our approach is to locate facial landmarks, then predict preference on the basis of their temporal dynamics. The database contains 768 videos involving four different kinds of preferences. We make it publically available.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number Admin @ si @ MNT2014 Serial 2453
Permanent link to this record
 

 
Author Carolina Malagelada; Michal Drozdzal; Santiago Segui; Sara Mendez; Jordi Vitria; Petia Radeva; Javier Santos; Anna Accarino; Juan R. Malagelada; Fernando Azpiroz
Title Classification of functional bowel disorders by objective physiological criteria based on endoluminal image analysis Type Journal Article
Year 2015 Publication American Journal of Physiology-Gastrointestinal and Liver Physiology Abbreviated Journal AJPGI
Volume 309 Issue 6 Pages G413--G419
Keywords capsule endoscopy; computer vision analysis; functional bowel disorders; intestinal motility; machine learning
Abstract (down) We have previously developed an original method to evaluate small bowel motor function based on computer vision analysis of endoluminal images obtained by capsule endoscopy. Our aim was to demonstrate intestinal motor abnormalities in patients with functional bowel disorders by endoluminal vision analysis. Patients with functional bowel disorders (n = 205) and healthy subjects (n = 136) ingested the endoscopic capsule (Pillcam-SB2, Given-Imaging) after overnight fast and 45 min after gastric exit of the capsule a liquid meal (300 ml, 1 kcal/ml) was administered. Endoluminal image analysis was performed by computer vision and machine learning techniques to define the normal range and to identify clusters of abnormal function. After training the algorithm, we used 196 patients and 48 healthy subjects, completely naive, as test set. In the test set, 51 patients (26%) were detected outside the normal range (P < 0.001 vs. 3 healthy subjects) and clustered into hypo- and hyperdynamic subgroups compared with healthy subjects. Patients with hypodynamic behavior (n = 38) exhibited less luminal closure sequences (41 ± 2% of the recording time vs. 61 ± 2%; P < 0.001) and more static sequences (38 ± 3 vs. 20 ± 2%; P < 0.001); in contrast, patients with hyperdynamic behavior (n = 13) had an increased proportion of luminal closure sequences (73 ± 4 vs. 61 ± 2%; P = 0.029) and more high-motion sequences (3 ± 1 vs. 0.5 ± 0.1%; P < 0.001). Applying an original methodology, we have developed a novel classification of functional gut disorders based on objective, physiological criteria of small bowel function.
Address
Corporate Author Thesis
Publisher American Physiological Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; OR;MV Approved no
Call Number Admin @ si @ MDS2015 Serial 2666
Permanent link to this record
 

 
Author C. Alejandro Parraga; Javier Vazquez; Maria Vanrell
Title A new cone activation-based natural images dataset Type Journal Article
Year 2009 Publication Perception Abbreviated Journal PER
Volume 36 Issue Pages 180
Keywords
Abstract (down) We generated a new dataset of digital natural images where each colour plane corresponds to the human LMS (long-, medium-, short-wavelength) cone activations. The images were chosen to represent five different visual environments (eg forest, seaside, mountain snow, urban, motorways) and were taken under natural illumination at different times of day. At the bottom-left corner of each picture there was a matte grey ball of approximately constant spectral reflectance (across the camera's response spectrum,) and nearly Lambertian reflective properties, which allows to compute (and remove, if necessary) the illuminant's colour and intensity. The camera (Sigma Foveon SD10) was calibrated by measuring its sensor's spectral responses using a set of 31 spectrally narrowband interference filters. This allowed conversion of the final camera-dependent RGB colour space into the Smith and Pokorny (1975) cone activation space by means of a polynomial transformation, optimised for a set of 1269 Munsell chip reflectances. This new method is an improvement over the usual 3 × 3 matrix transformation which is only accurate for spectrally-narrowband colours. The camera-to-LMS transformation can be recalculated to consider other non-human visual systems. The dataset is available to download from our website.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PVV2009 Serial 1193
Permanent link to this record
 

 
Author Olivier Penacchio
Title Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane Type Journal Article
Year 2011 Publication Mathematische Nachrichten Abbreviated Journal MN
Volume 284 Issue 4 Pages 526-542
Keywords Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25
Abstract (down) We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag Place of Publication Editor R. Mennicken
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1522-2616 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Pen2011 Serial 1721
Permanent link to this record