|   | 
Details
   web
Records
Author David Sanchez-Mendoza; David Masip; Agata Lapedriza
Title Emotion recognition from mid-level features Type Journal Article
Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 67 Issue Part 1 Pages 66–74
Keywords Facial expression; Emotion recognition; Action units; Computer vision
Abstract (up) In this paper we present a study on the use of Action Units as mid-level features for automatically recognizing basic and subtle emotions. We propose a representation model based on mid-level facial muscular movement features. We encode these movements dynamically using the Facial Action Coding System, and propose to use these intermediate features based on Action Units (AUs) to classify emotions. AUs activations are detected fusing a set of spatiotemporal geometric and appearance features. The algorithm is validated in two applications: (i) the recognition of 7 basic emotions using the publicly available Cohn-Kanade database, and (ii) the inference of subtle emotional cues in the Newscast database. In this second scenario, we consider emotions that are perceived cumulatively in longer periods of time. In particular, we Automatically classify whether video shoots from public News TV channels refer to Good or Bad news. To deal with the different video lengths we propose a Histogram of Action Units and compute it using a sliding window strategy on the frame sequences. Our approach achieves accuracies close to human perception.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8655 ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number Admin @ si @ SML2015 Serial 2746
Permanent link to this record
 

 
Author Jose Antonio Rodriguez; Florent Perronnin; Gemma Sanchez; Josep Llados
Title Unsupervised writer adaptation of whole-word HMMs with application to word-spotting Type Journal Article
Year 2010 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 31 Issue 8 Pages 742–749
Keywords Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis
Abstract (up) In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.

Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ RPS2010 Serial 1290
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Puig
Title Iterative Multiclass Multiscale Stacked Sequential Learning: definition and application to medical volume segmentation Type Journal Article
Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 46 Issue Pages 1-10
Keywords Machine learning; Sequential learning; Multi-class problems; Contextual learning; Medical volume segmentation
Abstract (up) In this work we present the iterative multi-class multi-scale stacked sequential learning framework (IMMSSL), a novel learning scheme that is particularly suited for medical volume segmentation applications. This model exploits the inherent voxel contextual information of the structures of interest in order to improve its segmentation performance results. Without any feature set or learning algorithm prior assumption, the proposed scheme directly seeks to learn the contextual properties of a region from the predicted classifications of previous classifiers within an iterative scheme. Performance results regarding segmentation accuracy in three two-class and multi-class medical volume datasets show a significant improvement with respect to state of the art alternatives. Due to its easiness of implementation and its independence of feature space and learning algorithm, the presented machine learning framework could be taken into consideration as a first choice in complex volume segmentation scenarios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SEP2014 Serial 2550
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; O. Pujol; Petia Radeva; Gemma Sanchez; Josep Llados
Title Blurred Shape Model for Binary and Grey-level Symbol Recognition Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 30 Issue 15 Pages 1424–1433
Keywords
Abstract (up) Many symbol recognition problems require the use of robust descriptors in order to obtain rich information of the data. However, the research of a good descriptor is still an open issue due to the high variability of symbols appearance. Rotation, partial occlusions, elastic deformations, intra-class and inter-class variations, or high variability among symbols due to different writing styles, are just a few problems. In this paper, we introduce a symbol shape description to deal with the changes in appearance that these types of symbols suffer. The shape of the symbol is aligned based on principal components to make the recognition invariant to rotation and reflection. Then, we present the Blurred Shape Model descriptor (BSM), where new features encode the probability of appearance of each pixel that outlines the symbols shape. Moreover, we include the new descriptor in a system to deal with multi-class symbol categorization problems. Adaboost is used to train the binary classifiers, learning the BSM features that better split symbol classes. Then, the binary problems are embedded in an Error-Correcting Output Codes framework (ECOC) to deal with the multi-class case. The methodology is evaluated on different synthetic and real data sets. State-of-the-art descriptors and classifiers are compared, showing the robustness and better performance of the present scheme to classify symbols with high variability of appearance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; DAG; MILAB Approved no
Call Number BCNPCL @ bcnpcl @ EFP2009a Serial 1180
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa
Title Median graph: A new exact algorithm using a distance based on the maximum common subgraph Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 30 Issue 5 Pages 579–588
Keywords
Abstract (up) Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems.
Address
Corporate Author Thesis
Publisher Elsevier Science Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8655 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ FVS2009a Serial 1114
Permanent link to this record
 

 
Author B. Gautam; Oriol Ramos Terrades; Joana Maria Pujadas-Mora; Miquel Valls-Figols
Title Knowledge graph based methods for record linkage Type Journal Article
Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 136 Issue Pages 127-133
Keywords
Abstract (up) Nowadays, it is common in Historical Demography the use of individual-level data as a consequence of a predominant life-course approach for the understanding of the demographic behaviour, family transition, mobility, etc. Advanced record linkage is key since it allows increasing the data complexity and its volume to be analyzed. However, current methods are constrained to link data from the same kind of sources. Knowledge graph are flexible semantic representations, which allow to encode data variability and semantic relations in a structured manner.

In this paper we propose the use of knowledge graph methods to tackle record linkage tasks. The proposed method, named WERL, takes advantage of the main knowledge graph properties and learns embedding vectors to encode census information. These embeddings are properly weighted to maximize the record linkage performance. We have evaluated this method on benchmark data sets and we have compared it to related methods with stimulating and satisfactory results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ GRP2020 Serial 3453
Permanent link to this record
 

 
Author Kai Wang; Joost Van de Weijer; Luis Herranz
Title ACAE-REMIND for online continual learning with compressed feature replay Type Journal Article
Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 150 Issue Pages 122-129
Keywords online continual learning; autoencoders; vector quantization
Abstract (up) Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.147; 601.379; 600.120; 600.141 Approved no
Call Number Admin @ si @ WWH2021 Serial 3575
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes
Title From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 123 Issue Pages 1-8
Keywords
Abstract (up) Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no
Call Number Admin @ si @ BRC2019 Serial 3275
Permanent link to this record
 

 
Author Antonio Hernandez; Miguel Angel Bautista; Xavier Perez Sala; Victor Ponce; Sergio Escalera; Xavier Baro; Oriol Pujol; Cecilio Angulo
Title Probability-based Dynamic Time Warping and Bag-of-Visual-and-Depth-Words for Human Gesture Recognition in RGB-D Type Journal Article
Year 2014 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 50 Issue 1 Pages 112-121
Keywords RGB-D; Bag-of-Words; Dynamic Time Warping; Human Gesture Recognition
Abstract (up) PATREC5825
We present a methodology to address the problem of human gesture segmentation and recognition in video and depth image sequences. A Bag-of-Visual-and-Depth-Words (BoVDW) model is introduced as an extension of the Bag-of-Visual-Words (BoVW) model. State-of-the-art RGB and depth features, including a newly proposed depth descriptor, are analysed and combined in a late fusion form. The method is integrated in a Human Gesture Recognition pipeline, together with a novel probability-based Dynamic Time Warping (PDTW) algorithm which is used to perform prior segmentation of idle gestures. The proposed DTW variant uses samples of the same gesture category to build a Gaussian Mixture Model driven probabilistic model of that gesture class. Results of the whole Human Gesture Recognition pipeline in a public data set show better performance in comparison to both standard BoVW model and DTW approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MV; 605.203 Approved no
Call Number Admin @ si @ HBP2014 Serial 2353
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke
Title Feature Selection on Node Statistics Based Embedding of Graphs Type Journal Article
Year 2012 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 33 Issue 15 Pages 1980–1990
Keywords Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification
Abstract (up) Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GVB2012b Serial 1993
Permanent link to this record
 

 
Author Carola Figueroa Flores; David Berga; Joost Van de Weijer; Bogdan Raducanu
Title Saliency for free: Saliency prediction as a side-effect of object recognition Type Journal Article
Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 150 Issue Pages 1-7
Keywords Saliency maps; Unsupervised learning; Object recognition
Abstract (up) Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects instead of the background. So far, computational methods for saliency estimation required the explicit generation of a saliency map, process which is usually achieved via eyetracking experiments on still images. This is a tedious process that needs to be repeated for each new dataset. In the current paper, we demonstrate that is possible to automatically generate saliency maps without ground-truth. In our approach, saliency maps are learned as a side effect of object recognition. Extensive experiments carried out on both real and synthetic datasets demonstrated that our approach is able to generate accurate saliency maps, achieving competitive results when compared with supervised methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.147; 600.120 Approved no
Call Number Admin @ si @ FBW2021 Serial 3559
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti
Title Finding rotational symmetries by cyclic string matching Type Journal Article
Year 1997 Publication Pattern recognition letters Abbreviated Journal PRL
Volume 18 Issue 14 Pages 1435-1442
Keywords Rotational symmetry; Reflectional symmetry; String matching
Abstract (up) Symmetry is an important shape feature. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG;IAM; Approved no
Call Number IAM @ iam @ LBM1997a Serial 1562
Permanent link to this record
 

 
Author Carles Fernandez; Pau Baiget; Xavier Roca; Jordi Gonzalez
Title Augmenting Video Surveillance Footage with Virtual Agents for Incremental Event Evaluation Type Journal Article
Year 2011 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 32 Issue 6 Pages 878–889
Keywords
Abstract (up) The fields of segmentation, tracking and behavior analysis demand for challenging video resources to test, in a scalable manner, complex scenarios like crowded environments or scenes with high semantics. Nevertheless, existing public databases cannot scale the presence of appearing agents, which would be useful to study long-term occlusions and crowds. Moreover, creating these resources is expensive and often too particularized to specific needs. We propose an augmented reality framework to increase the complexity of image sequences in terms of occlusions and crowds, in a scalable and controllable manner. Existing datasets can be increased with augmented sequences containing virtual agents. Such sequences are automatically annotated, thus facilitating evaluation in terms of segmentation, tracking, and behavior recognition. In order to easily specify the desired contents, we propose a natural language interface to convert input sentences into virtual agent behaviors. Experimental tests and validation in indoor, street, and soccer environments are provided to show the feasibility of the proposed approach in terms of robustness, scalability, and semantics.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ FBR2011b Serial 1723
Permanent link to this record
 

 
Author Ivet Rafegas; Maria Vanrell; Luis A Alexandre; G. Arias
Title Understanding trained CNNs by indexing neuron selectivity Type Journal Article
Year 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 136 Issue Pages 318-325
Keywords
Abstract (up) The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC; 600.087; 600.140; 600.118 Approved no
Call Number Admin @ si @ RVL2019 Serial 3310
Permanent link to this record
 

 
Author Lluis Gomez; Ali Furkan Biten; Ruben Tito; Andres Mafla; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas
Title Multimodal grid features and cell pointers for scene text visual question answering Type Journal Article
Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 150 Issue Pages 242-249
Keywords
Abstract (up) This paper presents a new model for the task of scene text visual question answering. In this task questions about a given image can only be answered by reading and understanding scene text. Current state of the art models for this task make use of a dual attention mechanism in which one attention module attends to visual features while the other attends to textual features. A possible issue with this is that it makes difficult for the model to reason jointly about both modalities. To fix this problem we propose a new model that is based on an single attention mechanism that attends to multi-modal features conditioned to the question. The output weights of this attention module over a grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text to the given question. Our experiments demonstrate competitive performance in two standard datasets with a model that is faster than previous methods at inference time. Furthermore, we also provide a novel analysis of the ST-VQA dataset based on a human performance study. Supplementary material, code, and data is made available through this link.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.084; 600.121 Approved no
Call Number Admin @ si @ GBT2021 Serial 3620
Permanent link to this record