|   | 
Details
   web
Records
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru; Miguel Angel Gonzalez Ballester
Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Book Chapter
Year 2012 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal
Volume 7029 Issue Pages 223–230
Keywords medial manifolds, abdomen.
Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D
objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial
manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our
method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs,
exploring the use of medial manifolds for the representation of multi-organ relations.
Address Toronto; Canada;
Corporate Author Thesis
Publisher Springer Link Place of Publication Berlin Editor H. Yoshida et al
Language English Summary Language English Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-28556-1 Medium
Area Expedition Conference ABDI
Notes IAM;MV Approved no
Call Number IAM @ iam @ VGB2012 Serial 1834
Permanent link to this record
 

 
Author Patricia Marquez;Debora Gil;Aura Hernandez-Sabate
Title A Complete Confidence Framework for Optical Flow Type Conference Article
Year 2012 Publication 12th European Conference on Computer Vision – Workshops and Demonstrations Abbreviated Journal
Volume 7584 Issue 2 Pages 124-133
Keywords Optical flow, confidence measures, sparsification plots, error prediction plots
Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Florence, Italy, October 7-13, 2012 Editor Andrea Fusiello, Vittorio Murino ,Rita Cucchiara
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-642-33867-0 Medium
Area Expedition Conference ECCVW
Notes IAM;ADAS; Approved no
Call Number IAM @ iam @ MGH2012b Serial 1991
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Agnes Borras; F. Javier Sanchez; Frederic Perez; Marius G. Linguraru
Title Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs Type Conference Article
Year 2011 Publication Workshop on Computational and Clinical Applications in Abdominal Imaging Abbreviated Journal
Volume 7029 Issue Pages 223-230
Keywords
Abstract (up) Medial representations are powerful tools for describing and parameterizing the volumetric shape of anatomical structures. Existing methods show excellent results when applied to 2D objects, but their quality drops across dimensions. This paper contributes to the computation of medial manifolds in two aspects. First, we provide a standard scheme for the computation of medial manifolds that avoid degenerated medial axis segments; second, we introduce an energy based method which performs independently of the dimension. We evaluate quantitatively the performance of our method with respect to existing approaches, by applying them to synthetic shapes of known medial geometry. Finally, we show results on shape representation of multiple abdominal organs, exploring the use of medial manifolds for the representation of multi-organ relations.
Address Nice, France
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor In H. Yoshida et al
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ABDI
Notes IAM; MV Approved no
Call Number VGB2011 Serial 2036
Permanent link to this record
 

 
Author Debora Gil; Sergio Vera; Agnes Borras; Albert Andaluz; Miguel Angel Gonzalez Ballester
Title Anatomical Medial Surfaces with Efficient Resolution of Branches Singularities Type Journal Article
Year 2017 Publication Medical Image Analysis Abbreviated Journal MIA
Volume 35 Issue Pages 390-402
Keywords Medial Representations; Shape Recognition; Medial Branching Stability ; Singular Points
Abstract (up) Medial surfaces are powerful tools for shape description, but their use has been limited due to the sensibility existing methods to branching artifacts. Medial branching artifacts are associated to perturbations of the object boundary rather than to geometric features. Such instability is a main obstacle for a con dent application in shape recognition and description. Medial branches correspond to singularities of the medial surface and, thus, they are problematic for existing morphological and energy-based algorithms. In this paper, we use algebraic geometry concepts in an energy-based approach to compute a medial surface presenting a stable branching topology. We also present an ecient GPU-CPU implementation using standard image processing tools. We show the method computational eciency and quality on a custom made synthetic database. Finally, we present some results on a medical imaging application for localization of abdominal pathologies.
Address
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.060; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ GVB2017 Serial 2775
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa
Title Median graph: A new exact algorithm using a distance based on the maximum common subgraph Type Journal Article
Year 2009 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 30 Issue 5 Pages 579–588
Keywords
Abstract (up) Median graphs have been presented as a useful tool for capturing the essential information of a set of graphs. Nevertheless, computation of optimal solutions is a very hard problem. In this work we present a new and more efficient optimal algorithm for the median graph computation. With the use of a particular cost function that permits the definition of the graph edit distance in terms of the maximum common subgraph, and a prediction function in the backtracking algorithm, we reduce the size of the search space, avoiding the evaluation of a great amount of states and still obtaining the exact median. We present a set of experiments comparing our new algorithm against the previous existing exact algorithm using synthetic data. In addition, we present the first application of the exact median graph computation to real data and we compare the results against an approximate algorithm based on genetic search. These experimental results show that our algorithm outperforms the previous existing exact algorithm and in addition show the potential applicability of the exact solutions to real problems.
Address
Corporate Author Thesis
Publisher Elsevier Science Inc. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8655 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ FVS2009a Serial 1114
Permanent link to this record
 

 
Author Manisha Das; Deep Gupta; Petia Radeva; Ashwini M. Bakde
Title Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid ℓ1 - ℓ0 layer decomposition domain Type Journal Article
Year 2021 Publication Biomedical Signal Processing and Control Abbreviated Journal BSPC
Volume 68 Issue Pages 102535
Keywords
Abstract (up) Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid ℓ1 − ℓ0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale ℓ1 − ℓ0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid ℓ1 − ℓ0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ DGR2021b Serial 3636
Permanent link to this record
 

 
Author Debora Gil
Title Geometric Differential Operators for Shape Modelling Type Book Whole
Year 2004 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Medical imaging feeds research in many computer vision and image processing fields: image filtering, segmentation, shape recovery, registration, retrieval and pattern matching. Because of their low contrast changes and large variety of artifacts and noise, medical imaging processing techniques relying on an analysis of the geometry of image level sets rather than on intensity values result in more robust treatment. From the starting point of treatment of intravascular images, this PhD thesis ad- dresses the design of differential image operators based on geometric principles for a robust shape modelling and restoration. Among all fields applying shape recovery, we approach filtering and segmentation of image objects. For a successful use in real images, the segmentation process should go through three stages: noise removing, shape modelling and shape recovery. This PhD addresses all three topics, but for the sake of algorithms as automated as possible, techniques for image processing will be designed to satisfy three main principles: a) convergence of the iterative schemes to non-trivial states avoiding image degeneration to a constant image and representing smooth models of the originals; b) smooth asymptotic behav- ior ensuring stabilization of the iterative process; c) fixed parameter values ensuring equal (domain free) performance of the algorithms whatever initial images/shapes. Our geometric approach to the generic equations that model the different processes approached enables defining techniques satisfying all the former requirements. First, we introduce a new curvature-based geometric flow for image filtering achieving a good compromise between noise removing and resemblance to original images. Sec- ond, we describe a new family of diffusion operators that restrict their scope to image level curves and serve to restore smooth closed models from unconnected sets of points. Finally, we design a regularization of snake (distance) maps that ensures its smooth convergence towards any closed shape. Experiments show that performance of the techniques proposed overpasses that of state-of-the-art algorithms.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Barcelona (Spain) Editor Jordi Saludes i Closa;Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 84-933652-0-3 Medium prit
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ GIL2004 Serial 1517
Permanent link to this record
 

 
Author Jaume Garcia
Title Generalized Active Shape Models Applied to Cardiac Function Analysis Type Report
Year 2004 Publication CVC Technical Report Abbreviated Journal
Volume Issue 78 Pages
Keywords Cardiac Analysis; Deformable Models; Active Contour Models; Active Shape Models; Tagged MRI; HARP; Contrast Echocardiography.
Abstract (up) Medical imaging is very useful in the assessment and treatment of many diseases. To deal with the great amount of data provided by imaging scanners and extract quantitative information that physicians can interpret, many analysis algorithms have been developed. Any process of analysis always consists of a first step of segmenting some particular structure. In medical imaging, structures are not always well defined and suffer from noise artifacts thus, ordinary segmentation methods are not well suited. The ones that seem to give better results are those based on deformable models. Nevertheless, despite their capability of mixing image features together with smoothness constraints that may compensate for image irregularities, these are naturally local methods, i. e., each node of the active contour evolve taking into account information about its neighbors and some other weak constraints about flexibility and smoothness, but not about the global shape that they should find. Due to the fact that structures to be segmented are the same for all cases but with some inter and intra-patient variation, the incorporation of a priori knowledge about shape in the segmentation method will provide robustness to it. Active Shape Models is an algorithm based on the creation of a shape model called Point Distribution Model. It performs a segmentation using only shapes similar than those previously learned from a training set that capture most of the variation presented by the structure. This algorithm works by updating shape nodes along a normal segment which often can be too restrictive. For this reason we propose a generalization of this algorithm that we call Generalized Active Shape Models and fully integrates the a priori knowledge given by the Point Distribution Model with deformable models or any other appropriate segmentation method. Two different applications to cardiac imaging of this generalized method are developed and promising results are shown.
Address CVC (UAB)
Corporate Author Thesis Master's thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Gar2004 Serial 1513
Permanent link to this record
 

 
Author Carles Onielfa; Carles Casacuberta; Sergio Escalera
Title Influence in Social Networks Through Visual Analysis of Image Memes Type Conference Article
Year 2022 Publication Artificial Intelligence Research and Development Abbreviated Journal
Volume 356 Issue Pages 71-80
Keywords
Abstract (up) Memes evolve and mutate through their diffusion in social media. They have the potential to propagate ideas and, by extension, products. Many studies have focused on memes, but none so far, to our knowledge, on the users that post them, their relationships, and the reach of their influence. In this article, we define a meme influence graph together with suitable metrics to visualize and quantify influence between users who post memes, and we also describe a process to implement our definitions using a new approach to meme detection based on text-to-image area ratio and contrast. After applying our method to a set of users of the social media platform Instagram, we conclude that our metrics add information to already existing user characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ OCE2022 Serial 3799
Permanent link to this record
 

 
Author Lu Yu; Vacit Oguz Yazici; Xialei Liu; Joost Van de Weijer; Yongmei Cheng; Arnau Ramisa
Title Learning Metrics from Teachers: Compact Networks for Image Embedding Type Conference Article
Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2907-2916
Keywords
Abstract (up) Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
Address Long beach; California; june 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ YYL2019 Serial 3281
Permanent link to this record
 

 
Author Idoia Ruiz
Title Deep Metric Learning for re-identification, tracking and hierarchical novelty detection Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Metric learning refers to the problem in machine learning of learning a distance or similarity measurement to compare data. In particular, deep metric learning involves learning a representation, also referred to as embedding, such that in the embedding space data samples can be compared based on the distance, directly providing a similarity measure. This step is necessary to perform several tasks in computer vision. It allows to perform the classification of images, regions or pixels, re-identification, out-of-distribution detection, object tracking in image sequences and any other task that requires computing a similarity score for their solution. This thesis addresses three specific problems that share this common requirement. The first one is person re-identification. Essentially, it is an image retrieval task that aims at finding instances of the same person according to a similarity measure. We first compare in terms of accuracy and efficiency, classical metric learning to basic deep learning based methods for this problem. In this context, we also study network distillation as a strategy to optimize the trade-off between accuracy and speed at inference time. The second problem we contribute to is novelty detection in image classification. It consists in detecting samples of novel classes, i.e. never seen during training. However, standard novelty detection does not provide any information about the novel samples besides they are unknown. Aiming at more informative outputs, we take advantage from the hierarchical taxonomies that are intrinsic to the classes. We propose a metric learning based approach that leverages the hierarchical relationships among classes during training, being able to predict the parent class for a novel sample in such hierarchical taxonomy. Our third contribution is in multi-object tracking and segmentation. This joint task comprises classification, detection, instance segmentation and tracking. Tracking can be formulated as a retrieval problem to be addressed with metric learning approaches. We tackle the existing difficulty in academic research that is the lack of annotated benchmarks for this task. To this matter, we introduce the problem of weakly supervised multi-object tracking and segmentation, facing the challenge of not having available ground truth for instance segmentation. We propose a synergistic training strategy that benefits from the knowledge of the supervised tasks that are being learnt simultaneously.
Address July, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Joan Serrat
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-4-8 Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ Rui2022 Serial 3717
Permanent link to this record
 

 
Author Wenwen Fu; Zhihong An; Wendong Huang; Haoran Sun; Wenjuan Gong; Jordi Gonzalez
Title A Spatio-Temporal Spotting Network with Sliding Windows for Micro-Expression Detection Type Journal Article
Year 2023 Publication Electronics Abbreviated Journal ELEC
Volume 12 Issue 18 Pages 3947
Keywords micro-expression spotting; sliding window; key frame extraction
Abstract (up) Micro-expressions reveal underlying emotions and are widely applied in political psychology, lie detection, law enforcement and medical care. Micro-expression spotting aims to detect the temporal locations of facial expressions from video sequences and is a crucial task in micro-expression recognition. In this study, the problem of micro-expression spotting is formulated as micro-expression classification per frame. We propose an effective spotting model with sliding windows called the spatio-temporal spotting network. The method involves a sliding window detection mechanism, combines the spatial features from the local key frames and the global temporal features and performs micro-expression spotting. The experiments are conducted on the CAS(ME)2 database and the SAMM Long Videos database, and the results demonstrate that the proposed method outperforms the state-of-the-art method by 30.58% for the CAS(ME)2 and 23.98% for the SAMM Long Videos according to overall F-scores.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ FAH2023 Serial 3864
Permanent link to this record
 

 
Author C. Alejandro Parraga; Xavier Otazu; Arash Akbarinia
Title Modelling symmetry perception with banks of quadrature convolutional Gabor kernels Type Conference Article
Year 2019 Publication 42nd edition of the European Conference on Visual Perception Abbreviated Journal
Volume Issue Pages 224-224
Keywords
Abstract (up) Mirror symmetry is a property most likely to be encountered in animals than in medium scale vegetation or inanimate objects in the natural world. This might be the reason why the human visual system has evolved to detect it quickly and robustly. Indeed, the perception of symmetry assists higher-level visual processing that are crucial for survival such as target recognition and identification irrespective of position and location. Although the task of detecting symmetrical objects seems effortless to us, it is very challenging for computers (to the extent that it has been proposed as a robust “captcha” by Funk & Liu in 2016). Indeed, the exact mechanism of symmetry detection in primates is not well understood: fMRI studies have shown that symmetrical shapes activate specific higher-level areas of the visual cortex (Sasaki et al.; 2005) and similarly, a large body of psychophysical experiments suggest that the symmetry perception is critically influenced by low-level mechanisms (Treder; 2010). In this work we attempt to find plausible low-level mechanisms that might form the basis for symmetry perception. Our simple model is made from banks of (i) odd-symmetric Gabors (resembling edge-detecting V1 neurons); and (ii) banks of larger odd- and even-symmetric Gabors (resembling higher visual cortex neurons), that pool signals from the 'edge image'. As reported previously (Akbarinia et al, ECVP2017), the convolution of the symmetrical lines with the two Gabor kernels of alternative phase produces a minimum in one and a maximum in the other (Osorio; 1996), and the rectification and combination of these signals create lines which hint of mirror symmetry in natural images. We improved the algorithm by combining these signals across several spatial scales. Our preliminary results suggest that such multiscale combination of convolutional operations might form the basis for much of the operation of the HVS in terms of symmetry detection and representation.
Address Leuven; Belgium; August 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECVP
Notes NEUROBIT; 600.128 Approved no
Call Number Admin @ si @ POA2019 Serial 3371
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Bogdan Raducanu; Maria Elena Meza-de-Luna; Joaquin Salas
Title Evaluating Real-Time Mirroring of Head Gestures using Smart Glasses Type Conference Article
Year 2015 Publication 16th IEEE International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages 452-460
Keywords
Abstract (up) Mirroring occurs when one person tends to mimic the non-verbal communication of their counterparts. Even though mirroring is a complex phenomenon, in this study, we focus on the detection of head-nodding as a simple non-verbal communication cue due to its significance as a gesture displayed during social interactions. This paper introduces a computer vision-based method to detect mirroring through the analysis of head gestures using wearable cameras (smart glasses). In addition, we study how such a method can be used to explore perceived competence. The proposed method has been evaluated and the experiments demonstrate how static and wearable cameras seem to be equally effective to gather the information required for the analysis.
Address Santiago de Chile; December 2015
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes OR; 600.068; 600.072;MV Approved no
Call Number Admin @ si @ TRM2015 Serial 2722
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier
Title Normalisation et validation d'images de documents capturées en mobilité Type Conference Article
Year 2014 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal
Volume Issue Pages 109-124
Keywords mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction
Abstract (up) Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods.
Address Nancy; France; March 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIFED
Notes DAG; 601.223; 600.077 Approved no
Call Number Admin @ si @ RCO2014b Serial 2546
Permanent link to this record