Cesar de Souza, Adrien Gaidon, Yohann Cabon, Naila Murray, & Antonio Lopez. (2020). Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models. IJCV - International Journal of Computer Vision, 128, 1505–1536.
Abstract: Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.
Keywords: Procedural generation; Human action recognition; Synthetic data; Physics
|
Marc Masana, Joost Van de Weijer, Luis Herranz, Andrew Bagdanov, & Jose Manuel Alvarez. (2017). Domain-adaptive deep network compression. In 17th IEEE International Conference on Computer Vision.
Abstract: Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
|
Mohamed Ramzy Ibrahim, Robert Benavente, Daniel Ponsa, & Felipe Lumbreras. (2023). Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Vol. 14469, 214–228). LNCS.
Abstract: Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.
|
Hassan Ahmed Sial, S. Sancho, Ramon Baldrich, Robert Benavente, & Maria Vanrell. (2018). Color-based data augmentation for Reflectance Estimation. In 26th Color Imaging Conference (pp. 284–289).
Abstract: Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.
|
Bojana Gajic, & Ramon Baldrich. (2018). Cross-domain fashion image retrieval. In CVPR 2018 Workshop on Women in Computer Vision (WiCV 2018, 4th Edition) (pp. 19500–19502).
Abstract: Cross domain image retrieval is a challenging task that implies matching images from one domain to their pairs from another domain. In this paper we focus on fashion image retrieval, which involves matching an image of a fashion item taken by users, to the images of the same item taken in controlled condition, usually by professional photographer. When facing this problem, we have different products
in train and test time, and we use triplet loss to train the network. We stress the importance of proper training of simple architecture, as well as adapting general models to the specific task.
|
Ivet Rafegas, & Maria Vanrell. (2018). Color encoding in biologically-inspired convolutional neural networks. VR - Vision Research, 151, 7–17.
Abstract: Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations.
Keywords: Color coding; Computer vision; Deep learning; Convolutional neural networks
|
Ivet Rafegas, & Maria Vanrell. (2017). Color representation in CNNs: parallelisms with biological vision. In ICCV Workshop on Mutual Benefits ofr Cognitive and Computer Vision.
Abstract: Convolutional Neural Networks (CNNs) trained for object recognition tasks present representational capabilities approaching to primate visual systems [1]. This provides a computational framework to explore how image features
are efficiently represented. Here, we dissect a trained CNN
[2] to study how color is represented. We use a classical methodology used in physiology that is measuring index of selectivity of individual neurons to specific features. We use ImageNet Dataset [20] images and synthetic versions
of them to quantify color tuning properties of artificial neurons to provide a classification of the network population.
We conclude three main levels of color representation showing some parallelisms with biological visual systems: (a) a decomposition in a circular hue space to represent single color regions with a wider hue sampling beyond the first
layer (V2), (b) the emergence of opponent low-dimensional spaces in early stages to represent color edges (V1); and (c) a strong entanglement between color and shape patterns representing object-parts (e.g. wheel of a car), objectshapes (e.g. faces) or object-surrounds configurations (e.g. blue sky surrounding an object) in deeper layers (V4 or IT).
|
Yaxing Wang, Joost Van de Weijer, Lu Yu, & Shangling Jui. (2022). Distilling GANs with Style-Mixed Triplets for X2I Translation with Limited Data. In 10th International Conference on Learning Representations.
Abstract: Conditional image synthesis is an integral part of many X2I translation systems, including image-to-image, text-to-image and audio-to-image translation systems. Training these large systems generally requires huge amounts of training data.
Therefore, we investigate knowledge distillation to transfer knowledge from a high-quality unconditioned generative model (e.g., StyleGAN) to a conditioned synthetic image generation modules in a variety of systems. To initialize the conditional and reference branch (from a unconditional GAN) we exploit the style mixing characteristics of high-quality GANs to generate an infinite supply of style-mixed triplets to perform the knowledge distillation. Extensive experimental results in a number of image generation tasks (i.e., image-to-image, semantic segmentation-to-image, text-to-image and audio-to-image) demonstrate qualitatively and quantitatively that our method successfully transfers knowledge to the synthetic image generation modules, resulting in more realistic images than previous methods as confirmed by a significant drop in the FID.
|
Javier Vazquez, Maria Vanrell, & Robert Benavente. (2010). Color names as a constraint for Computer Vision problems. In Proceedings of The CREATE 2010 Conference (324–328).
Abstract: Computer Vision Problems are usually ill-posed. Constraining de gamut of possible solutions is then a necessary step. Many constrains for different problems have been developed during years. In this paper, we present a different way of constraining some of these problems: the use of color names. In particular, we will focus on segmentation, representation ans constancy.
|
Vacit Oguz Yazici, Longlong Yu, Arnau Ramisa, Luis Herranz, & Joost Van de Weijer. (2024). Main product detection with graph networks for fashion. MTAP - Multimedia Tools and Applications, 83, 3215–3231.
Abstract: Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.
|
Fahad Shahbaz Khan, Shida Beigpour, Joost Van de Weijer, & Michael Felsberg. (2014). Painting-91: A Large Scale Database for Computational Painting Categorization. MVAP - Machine Vision and Applications, 25(6), 1385–1397.
Abstract: Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2011). Computational Color Constancy: Survey and Experiments. TIP - IEEE Transactions on Image Processing, 20(9), 2475–2489.
Abstract: Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.
Keywords: computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie, & Jean-Marc Ogier. (2013). Automatic text localisation in scanned comic books. In Proceedings of the International Conference on Computer Vision Theory and Applications (pp. 814–819).
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent document understanding enable direct content-based search as opposed to metadata only search (e.g. album title or author name). Few studies have been done in this direction. In this work we detail a novel approach for the automatic text localization in scanned comics book pages, an essential step towards a fully automatic comics book understanding. We focus on speech text as it is semantically important and represents the majority of the text present in comics. The approach is compared with existing methods of text localization found in the literature and results are presented.
Keywords: Text localization; comics; text/graphic separation; complex background; unstructured document
|
Christophe Rigaud, Dimosthenis Karatzas, Joost Van de Weijer, Jean-Christophe Burie, & Jean-Marc Ogier. (2013). An active contour model for speech balloon detection in comics. In 12th International Conference on Document Analysis and Recognition (pp. 1240–1244).
Abstract: Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.
|
Domicele Jonauskaite, Lucia Camenzind, C. Alejandro Parraga, Cecile N Diouf, Mathieu Mercapide Ducommun, Lauriane Müller, et al. (2021). Colour-emotion associations in individuals with red-green colour blindness. PeerJ, 9, e11180.
Abstract: Colours and emotions are associated in languages and traditions. Some of us may convey sadness by saying feeling blue or by wearing black clothes at funerals. The first example is a conceptual experience of colour and the second example is an immediate perceptual experience of colour. To investigate whether one or the other type of experience more strongly drives colour-emotion associations, we tested 64 congenitally red-green colour-blind men and 66 non-colour-blind men. All participants associated 12 colours, presented as terms or patches, with 20 emotion concepts, and rated intensities of the associated emotions. We found that colour-blind and non-colour-blind men associated similar emotions with colours, irrespective of whether colours were conveyed via terms (r = .82) or patches (r = .80). The colour-emotion associations and the emotion intensities were not modulated by participants' severity of colour blindness. Hinting at some additional, although minor, role of actual colour perception, the consistencies in associations for colour terms and patches were higher in non-colour-blind than colour-blind men. Together, these results suggest that colour-emotion associations in adults do not require immediate perceptual colour experiences, as conceptual experiences are sufficient.
Keywords: Affect; Chromotherapy; Colour cognition; Colour vision deficiency; Cross-modal correspondences; Daltonism; Deuteranopia; Dichromatic; Emotion; Protanopia.
|
Javier Vazquez. (2011). Colour Constancy in Natural Through Colour Naming and Sensor Sharpening (Maria Vanrell, & Graham D. Finlayson, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Colour is derived from three physical properties: incident light, object reflectance and sensor sensitivities. Incident light varies under natural conditions; hence, recovering scene illuminant is an important issue in computational colour. One way to deal with this problem under calibrated conditions is by following three steps, 1) building a narrow-band sensor basis to accomplish the diagonal model, 2) building a feasible set of illuminants, and 3) defining criteria to select the best illuminant. In this work we focus on colour constancy for natural images by introducing perceptual criteria in the first and third stages.
To deal with the illuminant selection step, we hypothesise that basic colour categories can be used as anchor categories to recover the best illuminant. These colour names are related to the way that the human visual system has evolved to encode relevant natural colour statistics. Therefore the recovered image provides the best representation of the scene labelled with the basic colour terms. We demonstrate with several experiments how this selection criterion achieves current state-of-art results in computational colour constancy. In addition to this result, we psychophysically prove that usual angular error used in colour constancy does not correlate with human preferences, and we propose a new perceptual colour constancy evaluation.
The implementation of this selection criterion strongly relies on the use of a diagonal
model for illuminant change. Consequently, the second contribution focuses on building an appropriate narrow-band sensor basis to represent natural images. We propose to use the spectral sharpening technique to compute a unique narrow-band basis optimised to represent a large set of natural reflectances under natural illuminants and given in the basis of human cones. The proposed sensors allow predicting unique hues and the World colour Survey data independently of the illuminant by using a compact singularity function. Additionally, we studied different families of sharp sensors to minimise different perceptual measures. This study brought us to extend the spherical sampling procedure from 3D to 6D.
Several research lines still remain open. One natural extension would be to measure the
effects of using the computed sharp sensors on the category hypothesis, while another might be to insert spatial contextual information to improve category hypothesis. Finally, much work still needs to be done to explore how individual sensors can be adjusted to the colours in a scene.
|
Jordi Roca, C. Alejandro Parraga, & Maria Vanrell. (2012). Predicting categorical colour perception in successive colour constancy. In Perception (Vol. 41, 138).
Abstract: Colour constancy is a perceptual mechanism that seeks to keep the colour of objects relatively stable under an illumination shift. Experiments haveshown that its effects depend on the number of colours present in the scene. We
studied categorical colour changes under different adaptation states, in particular, whether the colour categories seen under a chromatically neutral illuminant are the same after a shift in the chromaticity of the illumination. To do this, we developed the chromatic setting paradigm (2011 Journal of Vision11 349), which is as an extension of achromatic setting to colour categories. The paradigm exploits the ability of subjects to reliably reproduce the most representative examples of each category, adjusting multiple test patches embedded in a coloured Mondrian. Our experiments were run on a CRT monitor (inside a dark room) under various simulated illuminants and restricting the number of colours of the Mondrian background to three, thus weakening the adaptation effect. Our results show a change in the colour categories present before (under neutral illumination) and after adaptation (under coloured illuminants) with a tendency for adapted colours to be less saturated than before adaptation. This behaviour was predicted by a simple
affine matrix model, adjusted to the chromatic setting results.
|
Joost Van de Weijer, Cordelia Schmid, Jakob Verbeek, & Diane Larlus. (2009). Learning Color Names for Real-World Applications. TIP - IEEE Transaction in Image Processing, 18(7), 1512–1524.
Abstract: Color names are required in real-world applications such as image retrieval and image annotation. Traditionally, they are learned from a collection of labelled color chips. These color chips are labelled with color names within a well-defined experimental setup by human test subjects. However naming colors in real-world images differs significantly from this experimental setting. In this paper, we investigate how color names learned from color chips compare to color names learned from real-world images. To avoid hand labelling real-world images with color names we use Google Image to collect a data set. Due to limitations of Google Image this data set contains a substantial quantity of wrongly labelled data. We propose several variants of the PLSA model to learn color names from this noisy data. Experimental results show that color names learned from real-world images significantly outperform color names learned from labelled color chips for both image retrieval and image annotation.
|