|   | 
Details
   web
Records
Author C. Alejandro Parraga; Jordi Roca; Maria Vanrell
Title Do Basic Colors Influence Chromatic Adaptation? Type Journal Article
Year 2011 Publication Journal of Vision Abbreviated Journal VSS
Volume 11 Issue 11 Pages 85
Keywords
Abstract (down) Color constancy (the ability to perceive colors relatively stable under different illuminants) is the result of several mechanisms spread across different neural levels and responding to several visual scene cues. It is usually measured by estimating the perceived color of a grey patch under an illuminant change. In this work, we hypothesize whether chromatic adaptation (without a reference white or grey) could be driven by certain colors, specifically those corresponding to the universal color terms proposed by Berlin and Kay (1969). To this end we have developed a new psychophysical paradigm in which subjects adjust the color of a test patch (in CIELab space) to match their memory of the best example of a given color chosen from the universal terms list (grey, red, green, blue, yellow, purple, pink, orange and brown). The test patch is embedded inside a Mondrian image and presented on a calibrated CRT screen inside a dark cabin. All subjects were trained to “recall” their most exemplary colors reliably from memory and asked to always produce the same basic colors when required under several adaptation conditions. These include achromatic and colored Mondrian backgrounds, under a simulated D65 illuminant and several colored illuminants. A set of basic colors were measured for each subject under neutral conditions (achromatic background and D65 illuminant) and used as “reference” for the rest of the experiment. The colors adjusted by the subjects in each adaptation condition were compared to the reference colors under the corresponding illuminant and a “constancy index” was obtained for each of them. Our results show that for some colors the constancy index was better than for grey. The set of best adapted colors in each condition were common to a majority of subjects and were dependent on the chromaticity of the illuminant and the chromatic background considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7362 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PRV2011 Serial 1759
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title 3D Texton Spaces for color-texture retrieval Type Conference Article
Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 6111 Issue Pages 354–363
Keywords
Abstract (down) Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest problem by fusing color and texture through distances in texton spaces. Textons are the attributes of image blobs and they are responsible for texture discrimination as defined in Julesz’s Texton theory. We describe them in two low-dimensional and uniform spaces, namely, shape and color. The dissimilarity between color texture images is computed by combining the distances in these two spaces. Following this approach, we propose our TCD descriptor which outperforms current state of art methods in the two different approaches mentioned above, early combination with LBP and late combination with MPEG-7. This is done on an image retrieval experiment over a highly diverse texture dataset from Corel.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor A.C. Campilho and M.S. Kamel
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium
Area Expedition Conference ICIAR
Notes CIC Approved no
Call Number CAT @ cat @ ASV2010a Serial 1325
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title Perceptual color texture codebooks for retrieving in highly diverse texture datasets Type Conference Article
Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 866–869
Keywords
Abstract (down) Color and texture are visual cues of different nature, their integration in a useful visual descriptor is not an obvious step. One way to combine both features is to compute texture descriptors independently on each color channel. A second way is integrate the features at a descriptor level, in this case arises the problem of normalizing both cues. A significant progress in the last years in object recognition has provided the bag-of-words framework that again deals with the problem of feature combination through the definition of vocabularies of visual words. Inspired in this framework, here we present perceptual textons that will allow to fuse color and texture at the level of p-blobs, which is our feature detection step. Feature representation is based on two uniform spaces representing the attributes of the p-blobs. The low-dimensionality of these text on spaces will allow to bypass the usual problems of previous approaches. Firstly, no need for normalization between cues; and secondly, vocabularies are directly obtained from the perceptual properties of text on spaces without any learning step. Our proposal improve current state-of-art of color-texture descriptors in an image retrieval experiment over a highly diverse texture dataset from Corel.
Address Istanbul (Turkey)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium
Area Expedition Conference ICPR
Notes CIC Approved no
Call Number CAT @ cat @ ASV2010b Serial 1426
Permanent link to this record
 

 
Author Jorge Bernal; Nima Tajkbaksh; F. Javier Sanchez; Bogdan J. Matuszewski; Hao Chen; Lequan Yu; Quentin Angermann; Olivier Romain; Bjorn Rustad; Ilangko Balasingham; Konstantin Pogorelov; Sungbin Choi; Quentin Debard; Lena Maier Hein; Stefanie Speidel; Danail Stoyanov; Patrick Brandao; Henry Cordova; Cristina Sanchez Montes; Suryakanth R. Gurudu; Gloria Fernandez Esparrach; Xavier Dray; Jianming Liang; Aymeric Histace
Title Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015 Endoscopic Vision Challenge Type Journal Article
Year 2017 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 36 Issue 6 Pages 1231 - 1249
Keywords Endoscopic vision; Polyp Detection; Handcrafted features; Machine Learning; Validation Framework
Abstract (down) Colonoscopy is the gold standard for colon cancer screening though still some polyps are missed, thus preventing early disease detection and treatment. Several computational systems have been proposed to assist polyp detection during colonoscopy but so far without consistent evaluation. The lack
of publicly available annotated databases has made it difficult to compare methods and to assess if they achieve performance levels acceptable for clinical use. The Automatic Polyp Detection subchallenge, conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org) at the international conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) in 2015, was an effort to address this need. In this paper, we report the results of this comparative evaluation of polyp detection methods, as well as describe additional experiments to further explore differences between methods. We define performance metrics and provide evaluation databases that allow comparison of multiple methodologies. Results show that convolutional neural networks (CNNs) are the state of the art. Nevertheless it is also demonstrated that combining different methodologies can lead to an improved overall performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; 600.096; 600.075 Approved no
Call Number Admin @ si @ BTS2017 Serial 2949
Permanent link to this record
 

 
Author Daniela Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa
Title A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal JMANUFSYST
Volume 64 Issue Pages 497-507
Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor
Abstract (down) Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.
Address
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ ROS2022 Serial 3750
Permanent link to this record
 

 
Author Adrien Pavao; Isabelle Guyon; Anne-Catherine Letournel; Dinh-Tuan Tran; Xavier Baro; Hugo Jair Escalante; Sergio Escalera; Tyler Thomas; Zhen Xu
Title CodaLab Competitions: An Open Source Platform to Organize Scientific Challenges Type Journal Article
Year 2023 Publication Journal of Machine Learning Research Abbreviated Journal JMLR
Volume Issue Pages
Keywords
Abstract (down) CodaLab Competitions is an open source web platform designed to help data scientists and research teams to crowd-source the resolution of machine learning problems through the organization of competitions, also called challenges or contests. CodaLab Competitions provides useful features such as multiple phases, results and code submissions, multi-score leaderboards, and jobs running
inside Docker containers. The platform is very flexible and can handle large scale experiments, by allowing organizers to upload large datasets and provide their own CPU or GPU compute workers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ PGL2023 Serial 3973
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez
Title Unsupervised co-segmentation through region matching Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 749-756
Keywords
Abstract (down) Co-segmentation is defined as jointly partitioning multiple images depicting the same or similar object, into foreground and background. Our method consists of a multiple-scale multiple-image generative model, which jointly estimates the foreground and background appearance distributions from several images, in a non-supervised manner. In contrast to other co-segmentation methods, our approach does not require the images to have similar foregrounds and different backgrounds to function properly. Region matching is applied to exploit inter-image information by establishing correspondences between the common objects that appear in the scene. Moreover, computing many-to-many associations of regions allow further applications, like recognition of object parts across images. We report results on iCoseg, a challenging dataset that presents extreme variability in camera viewpoint, illumination and object deformations and poses. We also show that our method is robust against large intra-class variability in the MSRC database.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes ADAS Approved no
Call Number Admin @ si @ RSL2012b; ADAS @ adas @ Serial 2033
Permanent link to this record
 

 
Author Chenyang Fu; Kaida Xiao; Dimosthenis Karatzas; Sophie Wuerger
Title Investigation of Unique Hue Setting Changes with Ageing Type Journal Article
Year 2011 Publication Chinese Optics Letters Abbreviated Journal COL
Volume 9 Issue 5 Pages 053301-1-5
Keywords
Abstract (down) Clromatic sensitivity along the protan, deutan, and tritan lines and the loci of the unique hues (red, green, yellow, blue) for a very large sample (n = 185) of colour-normal observers ranging from 18 to 75 years of age are assessed. Visual judgments are obtained under normal viewing conditions using colour patches on self-luminous display under controlled adaptation conditions. Trivector discrimination thresholds show an increase as a function of age along the protan, deutan, and tritan axes, with the largest increase present along the tritan line, less pronounced shifts in unique hue settings are also observed. Based on the chromatic (protan, deutan, tritan) thresholds and using scaled cone signals, we predict the unique hue changes with ageing. A dependency on age for unique red and unique yellow for predicted hue angle is found. We conclude that the chromatic sensitivity deteriorates significantly with age, whereas the appearance of unique hues is much less affected, remaining almost constant despite the known changes in the ocular media.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ XFW2011 Serial 1818
Permanent link to this record
 

 
Author Joan Serrat; Felipe Lumbreras; Idoia Ruiz
Title Learning to measure for preshipment garment sizing Type Journal Article
Year 2018 Publication Measurement Abbreviated Journal MEASURE
Volume 130 Issue Pages 327-339
Keywords Apparel; Computer vision; Structured prediction; Regression
Abstract (down) Clothing is still manually manufactured for the most part nowadays, resulting in discrepancies between nominal and real dimensions, and potentially ill-fitting garments. Hence, it is common in the apparel industry to manually perform measures at preshipment time. We present an automatic method to obtain such measures from a single image of a garment that speeds up this task. It is generic and extensible in the sense that it does not depend explicitly on the garment shape or type. Instead, it learns through a probabilistic graphical model to identify the different contour parts. Subsequently, a set of Lasso regressors, one per desired measure, can predict the actual values of the measures. We present results on a dataset of 130 images of jackets and 98 of pants, of varying sizes and styles, obtaining 1.17 and 1.22 cm of mean absolute error, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; MSIAU; 600.122; 600.118 Approved no
Call Number Admin @ si @ SLR2018 Serial 3128
Permanent link to this record
 

 
Author Marina Alberti; Simone Balocco; Xavier Carrillo; J. Mauri; Petia Radeva
Title Automatic non-rigid temporal alignment of IVUS sequences: method and quantitative validation Type Journal Article
Year 2013 Publication Ultrasound in Medicine and Biology Abbreviated Journal UMB
Volume 39 Issue 9 Pages 1698-712
Keywords Intravascular ultrasound; Dynamic time warping; Non-rigid alignment; Sequence matching; Partial overlapping strategy
Abstract (down) Clinical studies on atherosclerosis regression/progression performed by intravascular ultrasound analysis would benefit from accurate alignment of sequences of the same patient before and after clinical interventions and at follow-up. In this article, a methodology for automatic alignment of intravascular ultrasound sequences based on the dynamic time warping technique is proposed. The non-rigid alignment is adapted to the specific task by applying it to multidimensional signals describing the morphologic content of the vessel. Moreover, dynamic time warping is embedded into a framework comprising a strategy to address partial overlapping between acquisitions and a term that regularizes non-physiologic temporal compression/expansion of the sequences. Extensive validation is performed on both synthetic and in vivo data. The proposed method reaches alignment errors of approximately 0.43 mm for pairs of sequences acquired during the same intervention phase and 0.77 mm for pairs of sequences acquired at successive intervention stages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ ABC2013 Serial 2313
Permanent link to this record
 

 
Author Marina Alberti; Simone Balocco; Xavier Carrillo; J. Mauri; Petia Radeva
Title Automatic Non-Rigid Temporal Alignment of IVUS Sequences Type Conference Article
Year 2012 Publication 15th International Conference on Medical Image Computing and Computer Assisted Intervention Abbreviated Journal
Volume 1 Issue Pages 642-650
Keywords
Abstract (down) Clinical studies on atherosclerosis regression/progression performed by Intravascular Ultrasound analysis require the alignment of pullbacks of the same patient before and after clinical interventions. In this paper, a methodology for the automatic alignment of IVUS sequences based on the Dynamic Time Warping technique is proposed. The method is adapted to the specific IVUS alignment task by applying the non-rigid alignment technique to multidimensional morphological signals, and by introducing a sliding window approach together with a regularization term. To show the effectiveness of our method, an extensive validation is performed both on synthetic data and in-vivo IVUS sequences. The proposed method is robust to stent deployment and post dilation surgery and reaches an alignment error of approximately 0.7 mm for in-vivo data, which is comparable to the inter-observer variability.
Address Nice, France
Corporate Author Thesis
Publisher Springer-Verlag Berlin, Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-3-642-33414-6 Medium
Area Expedition Conference MICCAI
Notes MILAB Approved no
Call Number Admin @ si @ ABC2012 Serial 2168
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov
Title Fast: Facilitated and accurate scene text proposals through fcn guided pruning Type Journal Article
Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 119 Issue Pages 112-120
Keywords
Abstract (down) Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.084; 600.121; 600.129 Approved no
Call Number Admin @ si @ BGN2019 Serial 3342
Permanent link to this record
 

 
Author Lu Yu; Bartlomiej Twardowski; Xialei Liu; Luis Herranz; Kai Wang; Yongmai Cheng; Shangling Jui; Joost Van de Weijer
Title Semantic Drift Compensation for Class-Incremental Learning of Embeddings Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.141; 601.309; 602.200; 600.120 Approved no
Call Number Admin @ si @ YTL2020 Serial 3422
Permanent link to this record
 

 
Author JW Xiao; CB Zhang; J. Feng; Xialei Liu; Joost Van de Weijer; MM Cheng
Title Endpoints Weight Fusion for Class Incremental Semantic Segmentation Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 7204-7213
Keywords
Abstract (down) Class incremental semantic segmentation (CISS) focuses on alleviating catastrophic forgetting to improve discrimination. Previous work mainly exploit regularization (e.g., knowledge distillation) to maintain previous knowledge in the current model. However, distillation alone often yields limited gain to the model since only the representations of old and new models are restricted to be consistent. In this paper, we propose a simple yet effective method to obtain a model with strong memory of old knowledge, named Endpoints Weight Fusion (EWF). In our method, the model containing old knowledge is fused with the model retaining new knowledge in a dynamic fusion manner, strengthening the memory of old classes in ever-changing distributions. In addition, we analyze the relation between our fusion strategy and a popular moving average technique EMA, which reveals why our method is more suitable for class-incremental learning. To facilitate parameter fusion with closer distance in the parameter space, we use distillation to enhance the optimization process. Furthermore, we conduct experiments on two widely used datasets, achieving the state-of-the-art performance.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP Approved no
Call Number Admin @ si @ XZF2023 Serial 3854
Permanent link to this record
 

 
Author Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan
Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 459-468
Keywords
Abstract (down) Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HUPBA Approved no
Call Number Admin @ si @ BMK2023 Serial 3921
Permanent link to this record