|   | 
Details
   web
Records
Author Marc Masana; Joost Van de Weijer; Luis Herranz;Andrew Bagdanov; Jose Manuel Alvarez
Title Domain-adaptive deep network compression Type Conference Article
Year 2017 Publication 17th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep Neural Networks trained on large datasets can be easily transferred to new domains with far fewer labeled examples by a process called fine-tuning. This has the advantage that representations learned in the large source domain can be exploited on smaller target domains. However, networks designed to be optimal for the source task are often prohibitively large for the target task. In this work we address the compression of networks after domain transfer.
We focus on compression algorithms based on low-rank matrix decomposition. Existing methods base compression solely on learned network weights and ignore the statistics of network activations. We show that domain transfer leads to large shifts in network activations and that it is desirable to take this into account when compressing.
We demonstrate that considering activation statistics when compressing weights leads to a rank-constrained regression problem with a closed-form solution. Because our method takes into account the target domain, it can more optimally
remove the redundancy in the weights. Experiments show that our Domain Adaptive Low Rank (DALR) method significantly outperforms existing low-rank compression techniques. With our approach, the fc6 layer of VGG19 can be compressed more than 4x more than using truncated SVD alone – with only a minor or no loss in accuracy. When applied to domain-transferred networks it allows for compression down to only 5-20% of the original number of parameters with only a minor drop in performance.
Address Venice; Italy; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes LAMP; 601.305; 600.106; 600.120 Approved no
Call Number Admin @ si @ Serial 3034
Permanent link to this record
 

 
Author Bhalaji Nagarajan; Marc Bolaños; Eduardo Aguilar; Petia Radeva
Title Deep ensemble-based hard sample mining for food recognition Type Journal Article
Year 2023 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR
Volume 95 Issue Pages 103905
Keywords
Abstract (down) Deep neural networks represent a compelling technique to tackle complex real-world problems, but are over-parameterized and often suffer from over- or under-confident estimates. Deep ensembles have shown better parameter estimations and often provide reliable uncertainty estimates that contribute to the robustness of the results. In this work, we propose a new metric to identify samples that are hard to classify. Our metric is defined as coincidence score for deep ensembles which measures the agreement of its individual models. The main hypothesis we rely on is that deep learning algorithms learn the low-loss samples better compared to large-loss samples. In order to compensate for this, we use controlled over-sampling on the identified ”hard” samples using proper data augmentation schemes to enable the models to learn those samples better. We validate the proposed metric using two public food datasets on different backbone architectures and show the improvements compared to the conventional deep neural network training using different performance metrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ NBA2023 Serial 3844
Permanent link to this record
 

 
Author Felipe Codevilla; Matthias Muller; Antonio Lopez; Vladlen Koltun; Alexey Dosovitskiy
Title End-to-end Driving via Conditional Imitation Learning Type Conference Article
Year 2018 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal
Volume Issue Pages 4693 - 4700
Keywords
Abstract (down) Deep networks trained on demonstrations of human driving have learned to follow roads and avoid obstacles. However, driving policies trained via imitation learning cannot be controlled at test time. A vehicle trained end-to-end to imitate an expert cannot be guided to take a specific turn at an upcoming intersection. This limits the utility of such systems. We propose to condition imitation learning on high-level command input. At test time, the learned driving policy functions as a chauffeur that handles sensorimotor coordination but continues to respond to navigational commands. We evaluate different architectures for conditional imitation learning in vision-based driving. We conduct experiments in realistic three-dimensional simulations of urban driving and on a 1/5 scale robotic truck that is trained to drive in a residential area. Both systems drive based on visual input yet remain responsive to high-level navigational commands. The supplementary video can be viewed at this https URL
Address Brisbane; Australia; May 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICRA
Notes ADAS; 600.116; 600.124; 600.118 Approved no
Call Number Admin @ si @ CML2018 Serial 3108
Permanent link to this record
 

 
Author Ahmed M. A. Salih; Ilaria Boscolo Galazzo; Zahra Zahra Raisi-Estabragh; Steffen E. Petersen; Polyxeni Gkontra; Karim Lekadir; Gloria Menegaz; Petia Radeva
Title A new scheme for the assessment of the robustness of Explainable Methods Applied to Brain Age estimation Type Conference Article
Year 2021 Publication 34th International Symposium on Computer-Based Medical Systems Abbreviated Journal
Volume Issue Pages 492-497
Keywords
Abstract (down) Deep learning methods show great promise in a range of settings including the biomedical field. Explainability of these models is important in these fields for building end-user trust and to facilitate their confident deployment. Although several Machine Learning Interpretability tools have been proposed so far, there is currently no recognized evaluation standard to transfer the explainability results into a quantitative score. Several measures have been proposed as proxies for quantitative assessment of explainability methods. However, the robustness of the list of significant features provided by the explainability methods has not been addressed. In this work, we propose a new proxy for assessing the robustness of the list of significant features provided by two explainability methods. Our validation is defined at functionality-grounded level based on the ranked correlation statistical index and demonstrates its successful application in the framework of brain aging estimation. We assessed our proxy to estimate brain age using neuroscience data. Our results indicate small variability and high robustness in the considered explainability methods using this new proxy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CBMS
Notes MILAB; no proj Approved no
Call Number Admin @ si @ SBZ2021 Serial 3629
Permanent link to this record
 

 
Author Adriana Romero
Title Assisting the training of deep neural networks with applications to computer vision Type Book Whole
Year 2015 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep learning has recently been enjoying an increasing popularity due to its success in solving challenging tasks. In particular, deep learning has proven to be effective in a large variety of computer vision tasks, such as image classification, object recognition and image parsing. Contrary to previous research, which required engineered feature representations, designed by experts, in order to succeed, deep learning attempts to learn representation hierarchies automatically from data. More recently, the trend has been to go deeper with representation hierarchies.
Learning (very) deep representation hierarchies is a challenging task, which
involves the optimization of highly non-convex functions. Therefore, the search
for algorithms to ease the learning of (very) deep representation hierarchies from data is extensive and ongoing.
In this thesis, we tackle the challenging problem of easing the learning of (very) deep representation hierarchies. We present a hyper-parameter free, off-the-shelf, simple and fast unsupervised algorithm to discover hidden structure from the input data by enforcing a very strong form of sparsity. We study the applicability and potential of the algorithm to learn representations of varying depth in a handful of applications and domains, highlighting the ability of the algorithm to provide discriminative feature representations that are able to achieve top performance.
Yet, while emphasizing the great value of unsupervised learning methods when
labeled data is scarce, the recent industrial success of deep learning has revolved around supervised learning. Supervised learning is currently the focus of many recent research advances, which have shown to excel at many computer vision tasks. Top performing systems often involve very large and deep models, which are not well suited for applications with time or memory limitations. More in line with the current trends, we engage in making top performing models more efficient, by designing very deep and thin models. Since training such very deep models still appears to be a challenging task, we introduce a novel algorithm that guides the training of very thin and deep models by hinting their intermediate representations.
Very deep and thin models trained by the proposed algorithm end up extracting feature representations that are comparable or even better performing
than the ones extracted by large state-of-the-art models, while compellingly
reducing the time and memory consumption of the model.
Address October 2015
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Carlo Gatta;Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ Rom2015 Serial 2707
Permanent link to this record
 

 
Author Eduardo Aguilar; Bhalaji Nagarajan; Beatriz Remeseiro; Petia Radeva
Title Bayesian deep learning for semantic segmentation of food images Type Journal Article
Year 2022 Publication Computers and Electrical Engineering Abbreviated Journal CEE
Volume 103 Issue Pages 108380
Keywords Deep learning; Uncertainty quantification; Bayesian inference; Image segmentation; Food analysis
Abstract (down) Deep learning has provided promising results in various applications; however, algorithms tend to be overconfident in their predictions, even though they may be entirely wrong. Particularly for critical applications, the model should provide answers only when it is very sure of them. This article presents a Bayesian version of two different state-of-the-art semantic segmentation methods to perform multi-class segmentation of foods and estimate the uncertainty about the given predictions. The proposed methods were evaluated on three public pixel-annotated food datasets. As a result, we can conclude that Bayesian methods improve the performance achieved by the baseline architectures and, in addition, provide information to improve decision-making. Furthermore, based on the extracted uncertainty map, we proposed three measures to rank the images according to the degree of noisy annotations they contained. Note that the top 135 images ranked by one of these measures include more than half of the worst-labeled food images.
Address October 2022
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ ANR2022 Serial 3763
Permanent link to this record
 

 
Author Chenshen Wu
Title Going beyond Classification Problems for the Continual Learning of Deep Neural Networks Type Book Whole
Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep learning has made tremendous progress in the last decade due to the explosion of training data and computational power. Through end-to-end training on a
large dataset, image representations are more discriminative than the previously
used hand-crafted features. However, for many real-world applications, training
and testing on a single dataset is not realistic, as the test distribution may change over time. Continuous learning takes this situation into account, where the learner must adapt to a sequence of tasks, each with a different distribution. If you would naively continue training the model with a new task, the performance of the model would drop dramatically for the previously learned data. This phenomenon is known as catastrophic forgetting.
Many approaches have been proposed to address this problem, which can be divided into three main categories: regularization-based approaches, rehearsal-based
approaches, and parameter isolation-based approaches. However, most of the existing works focus on image classification tasks and many other computer vision tasks
have not been well-explored in the continual learning setting. Therefore, in this
thesis, we study continual learning for image generation, object re-identification,
and object counting.
For the image generation problem, since the model can generate images from the previously learned task, it is free to apply rehearsal without any limitation. We developed two methods based on generative replay. The first one uses the generated image for joint training together with the new data. The second one is based on
output pixel-wise alignment. We extensively evaluate these methods on several
benchmarks.
Next, we study continual learning for object Re-Identification (ReID). Although
most state-of-the-art methods of ReID and continual ReID use softmax-triplet loss,
we found that it is better to solve the ReID problem from a meta-learning perspective because continual learning of reID can benefit a lot from the generalization of metalearning. We also propose a distillation loss and found that the removal of the positive pairs before the distillation loss is critical.
Finally, we study continual learning for the counting problem. We study the mainstream method based on density maps and propose a new approach for density
map distillation. We found that fixing the counter head is crucial for the continual learning of object counting. To further improve results, we propose an adaptor to adapt the changing feature extractor for the fixed counter head. Extensive evaluation shows that this results in improved continual learning performance.
Address
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-126409-0-8 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Wu2023 Serial 3960
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Daniel Ponsa; Felipe Lumbreras
Title Unveiling the Influence of Image Super-Resolution on Aerial Scene Classification Type Conference Article
Year 2023 Publication Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications Abbreviated Journal
Volume 14469 Issue Pages 214–228
Keywords
Abstract (down) Deep learning has made significant advances in recent years, and as a result, it is now in a stage where it can achieve outstanding results in tasks requiring visual understanding of scenes. However, its performance tends to decline when dealing with low-quality images. The advent of super-resolution (SR) techniques has started to have an impact on the field of remote sensing by enabling the restoration of fine details and enhancing image quality, which could help to increase performance in other vision tasks. However, in previous works, contradictory results for scene visual understanding were achieved when SR techniques were applied. In this paper, we present an experimental study on the impact of SR on enhancing aerial scene classification. Through the analysis of different state-of-the-art SR algorithms, including traditional methods and deep learning-based approaches, we unveil the transformative potential of SR in overcoming the limitations of low-resolution (LR) aerial imagery. By enhancing spatial resolution, more fine details are captured, opening the door for an improvement in scene understanding. We also discuss the effect of different image scales on the quality of SR and its effect on aerial scene classification. Our experimental work demonstrates the significant impact of SR on enhancing aerial scene classification compared to LR images, opening new avenues for improved remote sensing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIARP
Notes MSIAU Approved no
Call Number Admin @ si @ IBP2023 Serial 4008
Permanent link to this record
 

 
Author Kai Wang
Title Continual learning for hierarchical classification, few-shot recognition, and multi-modal learning Type Book Whole
Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep learning has drastically changed computer vision in the past decades and achieved great success in many applications, such as image classification, retrieval, detection, and segmentation thanks to the emergence of neural networks. Typically, for most applications, these networks are presented with examples from all tasks they are expected to perform. However, for many applications, this is not a realistic
scenario, and an algorithm is required to learn tasks sequentially. Continual learning proposes theory and methods for this scenario.
The main challenge for continual learning systems is called catastrophic forgetting and refers to a significant drop in performance on previous tasks. To tackle this problem, three main branches of methods have been explored to alleviate the forgetting in continual learning. They are regularization-based methods, rehearsalbased methods, and parameter isolation-based methods. However, most of them are focused on image classification tasks. Continual learning of many computer vision fields has still not been well-explored. Thus, in this thesis, we extend the continual learning knowledge to meta learning, we propose a method for the incremental learning of hierarchical relations for image classification, we explore image recognition in online continual learning, and study continual learning for cross-modal learning.
In this thesis, we explore the usage of image rehearsal when addressing the incremental meta learning problem. Observing that existingmethods fail to improve performance with saved exemplars, we propose to mix exemplars with current task data and episode-level distillation to overcome forgetting in incremental meta learning. Next, we study a more realistic image classification scenario where each class has multiple granularity levels. Only one label is present at any time, which requires the model to infer if the provided label has a hierarchical relation with any already known label. In experiments, we show that the estimated hierarchy information can be beneficial in both the training and inference stage.
For the online continual learning setting, we investigate the usage of intermediate feature replay. In this case, the training samples are only observed by the model only one time. Here we fix thememory buffer for feature replay and compare the effectiveness of saving features from different layers. Finally, we investigate multi-modal continual learning, where an image encoder is cooperating with a semantic branch. We consider the continual learning of both zero-shot learning and cross-modal retrieval problems.
Address July, 2022
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Luis Herranz;Joost Van de Weijer
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-124793-2-4 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Wan2022 Serial 3714
Permanent link to this record
 

 
Author Cesar de Souza; Adrien Gaidon; Yohann Cabon; Antonio Lopez
Title Procedural Generation of Videos to Train Deep Action Recognition Networks Type Conference Article
Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2594-2604
Keywords
Abstract (down) Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the generation of synthetic training data for action recognition, as it has recently shown promising results for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation and other computer graphics techniques of modern game engines. We generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for ”Procedural Human Action Videos”. It contains a total of 39, 982 videos, with more than 1, 000 examples for each action of 35 categories. Our approach is not limited to existing motion capture sequences, and we procedurally define 14 synthetic actions. We introduce a deep multi-task representation learning architecture to mix synthetic and real videos, even if the action categories differ. Our experiments on the UCF101 and HMDB51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance, significantly
outperforming fine-tuning state-of-the-art unsupervised generative models of videos.
Address Honolulu; Hawaii; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.076; 600.085; 600.118 Approved no
Call Number Admin @ si @ SGC2017 Serial 3051
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar
Title Reducing Label Effort with Deep Active Learning Type Book Whole
Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition applications, such as image classification, detection and segmentation. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected
informative and/or representative samples. In this thesis we study several aspects of active learning including video object detection for autonomous driving systems, image classification on balanced and imbalanced datasets and the incorporation of self-supervised learning in active learning. We briefly describe our approach in each of these areas to reduce the labeling effort.
In chapter two we introduce a novel active learning approach for object detection in videos by exploiting temporal coherence. Our criterion is based on the estimated number of errors in terms of false positives and false negatives. Additionally, we introduce a synthetic video dataset, called SYNTHIA-AL, specially designed to evaluate active
learning for video object detection in road scenes. Finally, we show that our
approach outperforms active learning baselines tested on two outdoor datasets.
In the next chapter we address the well-known problem of over confidence in the neural networks. As an alternative to network confidence, we propose a new informativeness-based active learning method that captures the learning dynamics of neural network with a metric called label-dispersion. This metric is low when the network consistently assigns the same label to the sample during the course of training and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.
In chapter four, we tackle the problem of sampling bias in active learning methods on imbalanced datasets. Active learning is generally studied on balanced datasets where an equal amount of images per class is available. However, real-world datasets suffer from severe imbalanced classes, the so called longtail distribution. We argue that this further complicates the active learning process, since the imbalanced data pool can result in suboptimal classifiers. To address this problem in the context of active learning, we propose a general optimization framework that explicitly takes class-balancing into account. Results on three datasets show that the method is general (it can be combined with most existing active learning algorithms) and can be effectively applied to boost the performance of both informative and representative-based active learning methods. In addition, we show that also on balanced datasets our method generally results in a performance gain.
Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent advancements in self-training have achieved very impressive results rivaling supervised learning on some datasets. In the last chapter we focus on whether active learning and self supervised learning can benefit from each other.
We study object recognition datasets with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high.
Address December 2021
Corporate Author Thesis Ph.D. thesis
Publisher IMPRIMA Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-122714-9-2 Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ Zol2021 Serial 3609
Permanent link to this record
 

 
Author Xialei Liu
Title Visual recognition in the wild: learning from rankings in small domains and continual learning in new domains Type Book Whole
Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep convolutional neural networks (CNNs) have achieved superior performance in many visual recognition application, such as image classification, detection and segmentation. In this thesis we address two limitations of CNNs. Training deep CNNs requires huge amounts of labeled data, which is expensive and labor intensive to collect. Another limitation is that training CNNs in a continual learning setting is still an open research question. Catastrophic forgetting is very likely when adapting trained models to new environments or new tasks. Therefore, in this thesis, we aim to improve CNNs for applications with limited data and to adapt CNNs continually to new tasks.
Self-supervised learning leverages unlabelled data by introducing an auxiliary task for which data is abundantly available. In the first part of the thesis, we show how rankings can be used as a proxy self-supervised task for regression problems. Then we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning. We then apply our framework on two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both, we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results. We further show that active learning using rankings can reduce labeling effort by up to 50\% for both IQA and crowd counting.
In the second part of the thesis, we propose two approaches to avoiding catastrophic forgetting in sequential task learning scenarios. The first approach is derived from Elastic Weight Consolidation, which uses a diagonal Fisher Information Matrix (FIM) to measure the importance of the parameters of the network. However the diagonal assumption is unrealistic. Therefore, we approximately diagonalize the FIM using a set of factorized rotation parameters. This leads to significantly better performance on continual learning of sequential tasks. For the second approach, we show that forgetting manifests differently at different layers in the network and propose a hybrid approach where distillation is used in the feature extractor and replay in the classifier via feature generation. Our method addresses the limitations of generative image replay and probability distillation (i.e. learning without forgetting) and can naturally aggregate new tasks in a single, well-calibrated classifier. Experiments confirm that our proposed approach outperforms the baselines and some start-of-the-art methods.
Address December 2019
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Andrew Bagdanov
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-121011-4-0 Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ Liu2019 Serial 3396
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz; Chengpeng Chen
Title Learning Effective RGB-D Representations for Scene Recognition Type Journal Article
Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 28 Issue 2 Pages 980-993
Keywords
Abstract (down) Deep convolutional networks can achieve impressive results on RGB scene recognition thanks to large data sets such as places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a two-step training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGB-D model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5 m to 5.5 m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can be addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video data set to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks that are trained in three steps with increasingly complex data to learn effective features (i.e., patches, frames, and sequences). Our approach obtains the state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.141; 600.120 Approved no
Call Number Admin @ si @ SJH2019 Serial 3247
Permanent link to this record
 

 
Author Hassan Ahmed Sial; S. Sancho; Ramon Baldrich; Robert Benavente; Maria Vanrell
Title Color-based data augmentation for Reflectance Estimation Type Conference Article
Year 2018 Publication 26th Color Imaging Conference Abbreviated Journal
Volume Issue Pages 284-289
Keywords
Abstract (down) Deep convolutional architectures have shown to be successful frameworks to solve generic computer vision problems. The estimation of intrinsic reflectance from single image is not a solved problem yet. Encoder-Decoder architectures are a perfect approach for pixel-wise reflectance estimation, although it usually suffers from the lack of large datasets. Lack of data can be partially solved with data augmentation, however usual techniques focus on geometric changes which does not help for reflectance estimation. In this paper we propose a color-based data augmentation technique that extends the training data by increasing the variability of chromaticity. Rotation on the red-green blue-yellow plane of an opponent space enable to increase the training set in a coherent and sound way that improves network generalization capability for reflectance estimation. We perform some experiments on the Sintel dataset showing that our color-based augmentation increase performance and overcomes one of the state-of-the-art methods.
Address Vancouver; November 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CIC
Notes CIC Approved no
Call Number Admin @ si @ SSB2018a Serial 3129
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz
Title Gate-Shift Networks for Video Action Recognition Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Deep 3D CNNs for video action recognition are designed to learn powerful representations in the joint spatio-temporal feature space. In practice however, because of the large number of parameters and computations involved, they may under-perform in the lack of sufficiently large datasets for training them at scale. In this paper we introduce spatial gating in spatial-temporal decomposition of 3D kernels. We implement this concept with Gate-Shift Module (GSM). GSM is lightweight and turns a 2D-CNN into a highly efficient spatio-temporal feature extractor. With GSM plugged in, a 2D-CNN learns to adaptively route features through time and combine them, at almost no additional parameters and computational overhead. We perform an extensive evaluation of the proposed module to study its effectiveness in video action recognition, achieving state-of-the-art results on Something Something-V1 and Diving48 datasets, and obtaining competitive results on EPIC-Kitchens with far less model complexity.
Address Virtual CVPR
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ SEL2020 Serial 3438
Permanent link to this record