|   | 
Details
   web
Records
Author David Geronimo; Frederic Lerasle; Antonio Lopez
Title State-driven particle filter for multi-person tracking Type Conference Article
Year 2012 Publication 11th International Conference on Advanced Concepts for Intelligent Vision Systems Abbreviated Journal
Volume 7517 Issue Pages 467-478
Keywords human tracking
Abstract (up) Multi-person tracking can be exploited in applications such as driver assistance, surveillance, multimedia and human-robot interaction. With the help of human detectors, particle filters offer a robust method able to filter noisy detections and provide temporal coherence. However, some traditional problems such as occlusions with other targets or the scene, temporal drifting or even the lost targets detection are rarely considered, making the systems performance decrease. Some authors propose to overcome these problems using heuristics not explained
and formalized in the papers, for instance by defining exceptions to the model updating depending on tracks overlapping. In this paper we propose to formalize these events by the use of a state-graph, defining the current state of the track (e.g., potential , tracked, occluded or lost) and the transitions between states in an explicit way. This approach has the advantage of linking track actions such as the online underlying models updating, which gives flexibility to the system. It provides an explicit representation to adapt the multiple parallel trackers depending on the context, i.e., each track can make use of a specific filtering strategy, dynamic model, number of particles, etc. depending on its state. We implement this technique in a single-camera multi-person tracker and test
it in public video sequences.
Address Brno, Chzech Republic
Corporate Author Thesis
Publisher Springer Place of Publication Heidelberg Editor J. Blanc-Talon et al.
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ACIVS
Notes ADAS Approved yes
Call Number GLL2012; ADAS @ adas @ gll2012a Serial 1990
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate
Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal
Volume Issue Pages 2042-2049
Keywords IEEE International Conference on Computer Vision – Workshops
Abstract (up) Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Barcelona (Spain) Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes IAM; ADAS Approved no
Call Number IAM @ iam @ MGH2011 Serial 1682
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate
Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 7324 Issue I Pages 184-191
Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
Abstract (up) Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor
Language english Summary Language Original Title
Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium
Area Expedition Conference ICIAR
Notes IAM Approved no
Call Number IAM @ iam @ MGH2012a Serial 1899
Permanent link to this record
 

 
Author David Vazquez
Title Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Book Whole
Year 2013 Publication PhD Thesis, Universitat de Barcelona-CVC Abbreviated Journal
Volume 1 Issue 1 Pages 1-105
Keywords Pedestrian Detection; Domain Adaptation
Abstract (up) Pedestrian detection is of paramount interest for many applications, e.g. Advanced Driver Assistance Systems, Intelligent Video Surveillance and Multimedia systems. Most promising pedestrian detectors rely on appearance-based classifiers trained with annotated data. However, the required annotation step represents an intensive and subjective task for humans, what makes worth to minimize their intervention in this process by using computational tools like realistic virtual worlds. The reason to use these kind of tools relies in the fact that they allow the automatic generation of precise and rich annotations of visual information. Nevertheless, the use of this kind of data comes with the following question: can a pedestrian appearance model learnt with virtual-world data work successfully for pedestrian detection in real-world scenarios?. To answer this question, we conduct different experiments that suggest a positive answer. However, the pedestrian classifiers trained with virtual-world data can suffer the so called dataset shift problem as real-world based classifiers does. Accordingly, we have designed different domain adaptation techniques to face this problem, all of them integrated in a same framework (V-AYLA). We have explored different methods to train a domain adapted pedestrian classifiers by collecting a few pedestrian samples from the target domain (real world) and combining them with many samples of the source domain (virtual world). The extensive experiments we present show that pedestrian detectors developed within the V-AYLA framework do achieve domain adaptation. Ideally, we would like to adapt our system without any human intervention. Therefore, as a first proof of concept we also propose an unsupervised domain adaptation technique that avoids human intervention during the adaptation process. To the best of our knowledge, this Thesis work is the first demonstrating adaptation of virtual and real worlds for developing an object detector. Last but not least, we also assessed a different strategy to avoid the dataset shift that consists in collecting real-world samples and retrain with them in such a way that no bounding boxes of real-world pedestrians have to be provided. We show that the generated classifier is competitive with respect to the counterpart trained with samples collected by manually annotating pedestrian bounding boxes. The results presented on this Thesis not only end with a proposal for adapting a virtual-world pedestrian detector to the real world, but also it goes further by pointing out a new methodology that would allow the system to adapt to different situations, which we hope will provide the foundations for future research in this unexplored area.
Address Barcelona
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Barcelona Editor Antonio Lopez;Daniel Ponsa
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-940530-1-6 Medium
Area Expedition Conference
Notes adas Approved yes
Call Number ADAS @ adas @ Vaz2013 Serial 2276
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Assessing agonist efficacy in an uncertain Em world Type Conference Article
Year 2012 Publication 40th Keystone Symposia on mollecular and celular biology Abbreviated Journal
Volume Issue Pages 79
Keywords
Abstract (up) The operational model of agonism has been widely used for the analysis of agonist action since its formulation in 1983. The model includes the Em parameter, which is defined as the maximum response of the system. The methods for Em estimation provide Em values not significantly higher than the maximum responses achieved by full agonists. However, it has been found that that some classes of compounds as, for instance, superagonists and positive allosteric modulators can increase the full agonist maximum response, implying upper limits for Em and thereby posing doubts on the validity of Em estimates. Because of the correlation between Em and operational efficacy, τ, wrong Em estimates will yield wrong τ estimates.
In this presentation, the operational model of agonism and various methods for the simulation of allosteric modulation will be analyzed. Alternatives for curve fitting will be presented and discussed.
Address Fairmont Banff Springs, Banff, Alberta, Canada
Corporate Author Keystone Symposia Thesis
Publisher Keystone Symposia Place of Publication Editor A. Christopoulus and M. Bouvier
Language english Summary Language english Original Title
Series Editor Keystone Symposia Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference KSMCB
Notes IAM Approved no
Call Number IAM @ iam @ RGG2012 Serial 1855
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester
Title Multilocal Creaseness Measure Type Journal
Year 2012 Publication The Insight Journal Abbreviated Journal IJ
Volume Issue Pages
Keywords Ridges, Valley, Creaseness, Structure Tensor, Skeleton,
Abstract (up) This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.
Address
Corporate Author Alma IT Systems Thesis
Publisher Place of Publication Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;ADAS; Approved no
Call Number IAM @ iam @ VGL2012 Serial 1840
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Sebastian Ramos; Antonio Lopez; Daniel Ponsa
Title Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers Type Conference Article
Year 2013 Publication CVPR Workshop on Ground Truth – What is a good dataset? Abbreviated Journal
Volume Issue Pages 688 - 693
Keywords Pedestrian Detection; Domain Adaptation
Abstract (up) Training vision-based pedestrian detectors using synthetic datasets (virtual world) is a useful technique to collect automatically the training examples with their pixel-wise ground truth. However, as it is often the case, these detectors must operate in real-world images, experiencing a significant drop of their performance. In fact, this effect also occurs among different real-world datasets, i.e. detectors' accuracy drops when the training data (source domain) and the application scenario (target domain) have inherent differences. Therefore, in order to avoid this problem, it is required to adapt the detector trained with synthetic data to operate in the real-world scenario. In this paper, we propose a domain adaptation approach based on boosting LDA exemplar classifiers from both virtual and real worlds. We evaluate our proposal on multiple real-world pedestrian detection datasets. The results show that our method can efficiently adapt the exemplar classifiers from virtual to real world, avoiding drops in average precision over the 15%.
Address Portland; oregon; June 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes ADAS; 600.054; 600.057; 601.217 Approved yes
Call Number XVR2013; ADAS @ adas @ xvr2013a Serial 2220
Permanent link to this record
 

 
Author Yainuvis Socarras; Sebastian Ramos; David Vazquez; Antonio Lopez; Theo Gevers
Title Adapting Pedestrian Detection from Synthetic to Far Infrared Images Type Conference Article
Year 2013 Publication ICCV Workshop on Visual Domain Adaptation and Dataset Bias Abbreviated Journal
Volume Issue Pages
Keywords Domain Adaptation; Far Infrared; Pedestrian Detection
Abstract (up) We present different techniques to adapt a pedestrian classifier trained with synthetic images and the corresponding automatically generated annotations to operate with far infrared (FIR) images. The information contained in this kind of images allow us to develop a robust pedestrian detector invariant to extreme illumination changes.
Address Sydney; Australia; December 2013
Corporate Author Thesis
Publisher Place of Publication Sydney, Australy Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW-VisDA
Notes ADAS; 600.054; 600.055; 600.057; 601.217;ISE Approved no
Call Number ADAS @ adas @ SRV2013 Serial 2334
Permanent link to this record