|   | 
Details
   web
Records
Author Misael Rosales; Petia Radeva; Oriol Rodriguez; Debora Gil
Title Suppression of IVUS Image Rotation. A Kinematic Approach Type Book Chapter
Year 2005 Publication Functional Imaging and Modeling of the Heart Abbreviated Journal LNCS
Volume 3504 Issue Pages 889-892
Keywords
Abstract (down) IntraVascular Ultrasound (IVUS) is an exploratory technique used in interventional procedures that shows cross section images of arteries and provides qualitative information about the causes and severity of the arterial lumen narrowing. Cross section analysis as well as visualization of plaque extension in a vessel segment during the catheter imaging pullback are the technique main advantages. However, IVUS sequence exhibits a periodic rotation artifact that makes difficult the longitudinal lesion inspection and hinders any segmentation algorithm. In this paper we propose a new kinematic method to estimate and remove the image rotation of IVUS images sequences. Results on several IVUS sequences show good results and prompt some of the clinical applications to vessel dynamics study, and relation to vessel pathology.
Address
Corporate Author Thesis
Publisher Springer Berlin / Heidelberg Place of Publication Editor Frangi, Alejandro and Radeva, Petia and Santos, Andres and Hernandez, Monica
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume 3504 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ RRR2005 Serial 1645
Permanent link to this record
 

 
Author Jose Marone; Simone Balocco; Marc Bolaños; Jose Massa; Petia Radeva
Title Learning the Lumen Border using a Convolutional Neural Networks classifier Type Conference Article
Year 2016 Publication 19th International Conference on Medical Image Computing and Computer Assisted Intervention Workshop Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) IntraVascular UltraSound (IVUS) is a technique allowing the diagnosis of coronary plaque. An accurate (semi-)automatic assessment of the luminal contours could speed up the diagnosis. In most of the approaches, the information on the vessel shape is obtained combining a supervised learning step with a local refinement algorithm. In this paper, we explore for the first time, the use of a Convolutional Neural Networks (CNN) architecture that on one hand is able to extract the optimal image features and at the same time can serve as a supervised classifier to detect the lumen border in IVUS images. The main limitation of CNN, relies on the fact that this technique requires a large amount of training data due to the huge amount of parameters that it has. To
solve this issue, we introduce a patch classification approach to generate an extended training-set from a few annotated images. An accuracy of 93% and F-score of 71% was obtained with this technique, even when it was applied to challenging frames containig calcified plaques, stents and catheter shadows.
Address Athens; Greece; October 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAIW
Notes MILAB; Approved no
Call Number Admin @ si @ MBB2016 Serial 2822
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva
Title On the usefulness of supervised learning for vessel border detection in IntraVascular Imaging Type Conference Article
Year 2005 Publication Proceeding of the 2005 conference on Artificial Intelligence Research and Development Abbreviated Journal
Volume Issue Pages 67-74
Keywords classification; vessel border modelling; IVUS
Abstract (down) IntraVascular UltraSound (IVUS) imaging is a useful tool in diagnosis of cardiac diseases since sequences completely show the morphology of coronary vessels. Vessel borders detection, especially the external adventitia layer, plays a central role in morphological measures and, thus, their segmentation feeds development of medical imaging techniques. Deterministic approaches fail to yield optimal results due to the large amount of IVUS artifacts and vessel borders descriptors. We propose using classification techniques to learn the set of descriptors and parameters that best detect vessel borders. Statistical hypothesis test on the error between automated detections and manually traced borders by 4 experts show that our detections keep within inter-observer variability.
Address
Corporate Author Thesis
Publisher IOS Press Place of Publication Amsterdam, The Netherlands Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ HGR2005c Serial 1549
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Oriol Rodriguez-Leor; Carlo Gatta; Angel Serrano; Petia Radeva
Title Enhancing In-Vitro IVUS Data for Tissue Characterization Type Conference Article
Year 2009 Publication 4th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume 5524 Issue Pages 241–248
Keywords
Abstract (down) Intravascular Ultrasound (IVUS) data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue, obtaining a reliable ground truth. The main drawback of this method is the few number of available study cases due to the complex procedure of histological analysis. In this work we propose a novel semi-supervised approach to enhance the in-vitro training set by including examples from in-vivo coronary plaques data set. For this purpose, a Sequential Floating Forward Selection method is applied on in-vivo data and plaque characterization performances are evaluated by Leave-One-Patient-Out cross-validation technique. Supervised data inclusion improves global classification accuracy from 89.39% to 91.82%.
Address Póvoa de Varzim, Portugal
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-02171-8 Medium
Area Expedition Conference IbPRIA
Notes MILAB;HuPBA Approved no
Call Number BCNPCL @ bcnpcl @ CPR2009a Serial 1162
Permanent link to this record
 

 
Author Fernando Vilariño; Panagiota Spyridonos; Fosca De Iorio; Jordi Vitria; Fernando Azpiroz; Petia Radeva
Title Intestinal Motility Assessment With Video Capsule Endoscopy: Automatic Annotation of Phasic Intestinal Contractions Type Journal Article
Year 2010 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 29 Issue 2 Pages 246-259
Keywords
Abstract (down) Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions shown in a video provided by an ingestible capsule with a wireless micro-camera. The manual labeling of all the motility events requires large amount of time for offline screening in search of findings with low prevalence, which turns this procedure currently unpractical. In this paper, we propose a machine learning system to automatically detect the phasic intestinal contractions in video capsule endoscopy, driving a useful but not feasible clinical routine into a feasible clinical procedure. Our proposal is based on a sequential design which involves the analysis of textural, color, and blob features together with SVM classifiers. Our approach tackles the reduction of the imbalance rate of data and allows the inclusion of domain knowledge as new stages in the cascade. We present a detailed analysis, both in a quantitative and a qualitative way, by providing several measures of performance and the assessment study of interobserver variability. Our system performs at 70% of sensitivity for individual detection, whilst obtaining equivalent patterns to those of the experts for density of contractions.
Address
Corporate Author IEEE Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area 800 Expedition Conference
Notes MILAB;MV;OR;SIAI Approved no
Call Number BCNPCL @ bcnpcl @ VSD2010; IAM @ iam @ VSI2010 Serial 1281
Permanent link to this record
 

 
Author Fernando Vilariño
Title A Machine Learning Approach for Intestinal Motility Assessment with Capsule Endoscopy Type Book Whole
Year 2006 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Intestinal motility assessment with video capsule endoscopy arises as a novel and challenging clinical fieldwork. This technique is based on the analysis of the patterns of intestinal contractions obtained by labelling all the motility events present in a video provided by a capsule with a wireless micro-camera, which is ingested by the patient. However, the visual analysis of these video sequences presents several im- portant drawbacks, mainly related to both the large amount of time needed for the visualization process, and the low prevalence of intestinal contractions in video.
In this work we propose a machine learning system to automatically detect the intestinal contractions in video capsule endoscopy, driving a very useful but not fea- sible clinical routine into a feasible clinical procedure. Our proposal is divided into two different parts: The first part tackles the problem of the automatic detection of phasic contractions in capsule endoscopy videos. Phasic contractions are dynamic events spanning about 4-5 seconds, which show visual patterns with a high variability. Our proposal is based on a sequential design which involves the analysis of textural, color and blob features with powerful classifiers such as SVM. This approach appears to cope with two basic aims: the reduction of the imbalance rate of the data set, and the modular construction of the system, which adds the capability of including domain knowledge as new stages in the cascade. The second part of the current work tackles the problem of the automatic detection of tonic contractions. Tonic contrac- tions manifest in capsule endoscopy as a sustained pattern of the folds and wrinkles of the intestine, which may be prolonged for an undetermined span of time. Our proposal is based on the analysis of the wrinkle patterns, presenting a comparative study of diverse features and classification methods, and providing a set of appro- priate descriptors for their characterization. We provide a detailed analysis of the performance achieved by our system both in a qualitative and a quantitative way.
Address CVC (UAB)
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor Petia Radeva
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue 84-933652-7-0 Edition
ISSN ISBN Medium
Area 800 Expedition Conference
Notes MV;SIAI Approved no
Call Number Admin @ si @ Vil2006; IAM @ iam @ Vil2006 Serial 738
Permanent link to this record
 

 
Author Michal Drozdzal; Laura Igual; Petia Radeva; Jordi Vitria; Carolina Malagelada; Fernando Azpiroz
Title Aligning Endoluminal Scene Sequences in Wireless Capsule Endoscopy Type Conference Article
Year 2010 Publication IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis Abbreviated Journal
Volume Issue Pages 117–124
Keywords
Abstract (down) Intestinal motility analysis is an important examination in detection of various intestinal malfunctions. One of the big challenges of automatic motility analysis is how to compare sequence of images and extract dynamic paterns taking into account the high deformability of the intestine wall as well as the capsule motion. From clinical point of view the ability to align endoluminal scene sequences will help to find regions of similar intestinal activity and in this way will provide a valuable information on intestinal motility problems. This work, for first time, addresses the problem of aligning endoluminal sequences taking into account motion and structure of the intestine. To describe motility in the sequence, we propose different descriptors based on the Sift Flow algorithm, namely: (1) Histograms of Sift Flow Directions to describe the flow course, (2) Sift Descriptors to represent image intestine structure and (3) Sift Flow Magnitude to quantify intestine deformation. We show that the merge of all three descriptors provides robust information on sequence description in terms of motility. Moreover, we develop a novel methodology to rank the intestinal sequences based on the expert feedback about relevance of the results. The experimental results show that the selected descriptors are useful in the alignment and similarity description and the proposed method allows the analysis of the WCE.
Address San Francisco; CA; USA; June 2010
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2160-7508 ISBN 978-1-4244-7029-7 Medium
Area Expedition Conference MMBIA
Notes OR;MILAB;MV Approved no
Call Number BCNPCL @ bcnpcl @ DIR2010 Serial 1316
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Ekaterina Zaytseva; Fernando Azpiroz; Petia Radeva; Jordi Vitria
Title Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images Type Journal Article
Year 2014 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 18 Issue 6 Pages 1831-1838
Keywords Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality
Abstract (down) Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; MILAB; 600.046;MV Approved no
Call Number Admin @ si @ SDZ2014 Serial 2385
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados
Title Touching Text Character Localization in Graphical Documents using SIFT Type Conference Article
Year 2009 Publication In proceedings 8th IAPR International Workshop on Graphics Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
Address La rochelle; July 2009
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GREC
Notes DAG Approved no
Call Number DAG @ dag @ RPL2009c Serial 1445
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados
Title Touching Text Character Localization in Graphical Documents using SIFT Type Book Chapter
Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal
Volume 6020 Issue Pages 199-211
Keywords Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform
Abstract (down) Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ RPL2010c Serial 2408
Permanent link to this record
 

 
Author A. M. Here; B. C. Lopez; Debora Gil; J. J. Camarero; Jordi Martinez-Vilalta
Title A new software to analyse wood anatomical features in conifer species Type Conference Article
Year 2013 Publication International Symposium on Wood Structure in Plant Biology and Ecology Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (down) International Symposium on Wood Structure in Plant Biology and Ecology
Address Naples; Italy; March 2013
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WSE
Notes IAM Approved no
Call Number Admin @ si @ HLG2013 Serial 2303
Permanent link to this record
 

 
Author Jaume Garcia; Debora Gil; Aura Hernandez-Sabate
Title Endowing Canonical Geometries to Cardiac Structures Type Book Chapter
Year 2010 Publication Statistical Atlases And Computational Models Of The Heart Abbreviated Journal
Volume 6364 Issue Pages 124-133
Keywords
Abstract (down) International conference on Cardiac electrophysiological simulation challenge
In this paper, we show that canonical (shape-based) geometries can be endowed to cardiac structures using tubular coordinates defined over their medial axis. We give an analytic formulation of these geometries by means of B-Splines. Since B-Splines present vector space structure PCA can be applied to their control points and statistical models relating boundaries and the interior of the anatomical structures can be derived. We demonstrate the applicability in two cardiac structures, the 3D Left Ventricular volume, and the 2D Left-Right ventricle set in 2D Short Axis view.
Address
Corporate Author Thesis
Publisher Springer Berlin / Heidelberg Place of Publication Editor Camara, O.; Pop, M.; Rhode, K.; Sermesant, M.; Smith, N.; Young, A.
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ GGH2010b Serial 1515
Permanent link to this record
 

 
Author Matthias Eisenmann; Annika Reinke; Vivienn Weru; Minu D. Tizabi; Fabian Isensee; Tim J. Adler; Sharib Ali; Vincent Andrearczyk; Marc Aubreville; Ujjwal Baid; Spyridon Bakas; Niranjan Balu; Sophia Bano; Jorge Bernal; Sebastian Bodenstedt; Alessandro Casella; Veronika Cheplygina; Marie Daum; Marleen de Bruijne
Title Why Is the Winner the Best? Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 19955-19966
Keywords
Abstract (down) International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The “typical” lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ISE Approved no
Call Number Admin @ si @ ERW2023 Serial 3842
Permanent link to this record
 

 
Author Maryam Asadi-Aghbolaghi; Albert Clapes; Marco Bellantonio; Hugo Jair Escalante; Victor Ponce; Xavier Baro; Isabelle Guyon; Shohreh Kasaei; Sergio Escalera
Title Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey Type Book Chapter
Year 2017 Publication Gesture Recognition Abbreviated Journal
Volume Issue Pages 539-578
Keywords Action recognition; Gesture recognition; Deep learning architectures; Fusion strategies
Abstract (down) Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ ACB2017a Serial 2981
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa
Title Multiple target tracking for intelligent headlights control Type Journal Article
Year 2012 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 13 Issue 2 Pages 594-605
Keywords Intelligent Headlights
Abstract (down) Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial 1877
Permanent link to this record