|   | 
Details
   web
Records
Author Ivan Huerta; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez
Title Chromatic shadow detection and tracking for moving foreground segmentation Type Journal Article
Year 2015 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 41 Issue Pages 42-53
Keywords Detecting moving objects; Chromatic shadow detection; Temporal local gradient; Spatial and Temporal brightness and angle distortions; Shadow tracking
Abstract (up) Advanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus a ecting the performance of the nal detection. In this paper we address the detection of both penumbra and umbra shadow regions. First, a novel bottom-up approach is presented based on gradient and colour models, which successfully discriminates between chromatic moving cast shadow regions and those regions detected as moving objects. In essence, those regions corresponding to potential shadows are detected based on edge partitioning and colour statistics. Subsequently (i) temporal similarities between textures and (ii) spatial similarities between chrominance angle and brightness distortions are analysed for each potential shadow region for detecting the umbra shadow regions. Our second contribution re nes even further the segmentation results: a tracking-based top-down approach increases the performance of our bottom-up chromatic shadow detection algorithm by properly correcting non-detected shadows.
To do so, a combination of motion lters in a data association framework exploits the temporal consistency between objects and shadows to increase
the shadow detection rate. Experimental results exceed current state-of-the-
art in shadow accuracy for multiple well-known surveillance image databases which contain di erent shadowed materials and illumination conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078; 600.063 Approved no
Call Number Admin @ si @ HHM2015 Serial 2703
Permanent link to this record
 

 
Author Kunal Biswas; Palaiahnakote Shivakumara; Umapada Pal; Tong Lu; Michel Blumenstein; Josep Llados
Title Classification of aesthetic natural scene images using statistical and semantic features Type Journal Article
Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 82 Issue 9 Pages 13507-13532
Keywords
Abstract (up) Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ BSP2023 Serial 3873
Permanent link to this record
 

 
Author A.S. Coquel; Jean-Pascal Jacob; M. Primet; A. Demarez; Mariella Dimiccoli; T. Julou; L. Moisan; A. Lindner; H. Berry
Title Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect Type Journal Article
Year 2013 Publication Plos Computational Biology Abbreviated Journal PCB
Volume 9 Issue 4 Pages
Keywords
Abstract (up) Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor : Stanislav Shvartsman, Princeton University, United States of America
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @CJP2013 Serial 2786
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer
Title Improved Recursive Geodesic Distance Computation for Edge Preserving Filter Type Journal Article
Year 2017 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 26 Issue 8 Pages 3696 - 3706
Keywords Geodesic distance filter; color image filtering; image enhancement
Abstract (up) All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; ISE; 600.120; 600.098; 600.119 Approved no
Call Number Admin @ si @ Moz2017 Serial 2921
Permanent link to this record
 

 
Author Thierry Brouard; Jordi Gonzalez; Caifeng Shan; Massimo Piccardi; Larry S. Davis
Title Special issue on background modeling for foreground detection in real-world dynamic scenes Type Journal Article
Year 2014 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 25 Issue 5 Pages 1101-1103
Keywords
Abstract (up) Although background modeling and foreground detection are not mandatory steps for computer vision applications, they may prove useful as they separate the primal objects usually called “foreground” from the remaining part of the scene called “background”, and permits different algorithmic treatment in the video processing field such as video surveillance, optical motion capture, multimedia applications, teleconferencing and human–computer interfaces. Conventional background modeling methods exploit the temporal variation of each pixel to model the background, and the foreground detection is made using change detection. The last decade witnessed very significant publications on background modeling but recently new applications in which background is not static, such as recordings taken from mobile devices or Internet videos, need new developments to detect robustly moving objects in challenging environments. Thus, effective methods for robustness to deal both with dynamic backgrounds, i
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0932-8092 ISBN Medium
Area Expedition Conference
Notes ISE; 600.078 Approved no
Call Number BGS2014a Serial 2411
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title A Regularized Curvature Flow Designed for a Selective Shape Restoration Type Journal Article
Year 2004 Publication IEEE Transactions on Image Processing Abbreviated Journal
Volume 13 Issue Pages 1444–1458
Keywords Geometric flows, nonlinear filtering, shape recovery.
Abstract (up) Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number BCNPCL @ bcnpcl @ GiR2004b Serial 491
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva
Title Fundamentals of Stop and Go active models Type Journal Article
Year 2005 Publication Image and Vision Computing Abbreviated Journal
Volume 23 Issue 8 Pages 681-691
Keywords Deformable models; Geodesic snakes; Region-based segmentation
Abstract (up) An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.
Address
Corporate Author Thesis
Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0262-8856 ISBN Medium
Area Expedition Conference
Notes IAM;MILAB;HuPBA Approved no
Call Number IAM @ iam @ PGR2005 Serial 1629
Permanent link to this record
 

 
Author Angel Sappa; David Geronimo; Fadi Dornaika; Antonio Lopez
Title On-board camera extrinsic parameter estimation Type Journal Article
Year 2006 Publication Electronics Letters Abbreviated Journal EL
Volume 42 Issue 13 Pages 745–746
Keywords
Abstract (up) An efficient technique for real-time estimation of camera extrinsic parameters is presented. It is intended to be used on on-board vision systems for driving assistance applications. The proposed technique is based on the use of a commercial stereo vision system that does not need any visual feature extraction.
Address
Corporate Author Thesis
Publisher IEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ SGD2006a Serial 655
Permanent link to this record
 

 
Author Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger
Title Visual Gamma Correction for LCD Displays Type Journal Article
Year 2011 Publication Displays Abbreviated Journal DIS
Volume 32 Issue 1 Pages 17-23
Keywords Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration
Abstract (up) An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ XFK2011 Serial 1815
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; F. Javier Sanchez; Fernando Vilariño
Title Growing Algorithm for Intersection Detection (GRAID) in branching patterns Type Journal Article
Year 2015 Publication Machine Vision and Applications Abbreviated Journal MVAP
Volume 26 Issue 2 Pages 387-400
Keywords Bifurcation ; Crossroad; Intersection ;Retina ; Vessel
Abstract (up) Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ;SIAI Approved no
Call Number Admin @ si @MBS2015 Serial 2777
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title Extending anisotropic operators to recover smooth shapes Type Journal Article
Year 2005 Publication Computer Vision and Image Understanding Abbreviated Journal
Volume 99 Issue 1 Pages 110-125
Keywords Contour completion; Functional extension; Differential operators; Riemmanian manifolds; Snake segmentation
Abstract (up) Anisotropic differential operators are widely used in image enhancement processes. Recently, their property of smoothly extending functions to the whole image domain has begun to be exploited. Strong ellipticity of differential operators is a requirement that ensures existence of a unique solution. This condition is too restrictive for operators designed to extend image level sets: their own functionality implies that they should restrict to some vector field. The diffusion tensor that defines the diffusion operator links anisotropic processes with Riemmanian manifolds. In this context, degeneracy implies restricting diffusion to the varieties generated by the vector fields of positive eigenvalues, provided that an integrability condition is satisfied. We will use that any smooth vector field fulfills this integrability requirement to design line connection algorithms for contour completion. As application we present a segmenting strategy that assures convergent snakes whatever the geometry of the object to be modelled is.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-3142 ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GIR2005 Serial 1530
Permanent link to this record
 

 
Author Zhijie Fang; Antonio Lopez
Title Intention Recognition of Pedestrians and Cyclists by 2D Pose Estimation Type Journal Article
Year 2019 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 21 Issue 11 Pages 4773 - 4783
Keywords
Abstract (up) Anticipating the intentions of vulnerable road users (VRUs) such as pedestrians and cyclists is critical for performing safe and comfortable driving maneuvers. This is the case for human driving and, thus, should be taken into account by systems providing any level of driving assistance, from advanced driver assistant systems (ADAS) to fully autonomous vehicles (AVs). In this paper, we show how the latest advances on monocular vision-based human pose estimation, i.e. those relying on deep Convolutional Neural Networks (CNNs), enable to recognize the intentions of such VRUs. In the case of cyclists, we assume that they follow traffic rules to indicate future maneuvers with arm signals. In the case of pedestrians, no indications can be assumed. Instead, we hypothesize that the walking pattern of a pedestrian allows to determine if he/she has the intention of crossing the road in the path of the ego-vehicle, so that the ego-vehicle must maneuver accordingly (e.g. slowing down or stopping). In this paper, we show how the same methodology can be used for recognizing pedestrians and cyclists' intentions. For pedestrians, we perform experiments on the JAAD dataset. For cyclists, we did not found an analogous dataset, thus, we created our own one by acquiring and annotating videos which we share with the research community. Overall, the proposed pipeline provides new state-of-the-art results on the intention recognition of VRUs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ FaL2019 Serial 3305
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title Shape Restoration via a Regularized Curvature Flow Type Journal Article
Year 2004 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal
Volume 21 Issue 3 Pages 205-223
Keywords
Abstract (up) Any image filtering operator designed for automatic shape restoration should satisfy robustness (whatever the nature and degree of noise is) as well as non-trivial smooth asymptotic behavior. Moreover, a stopping criterion should be determined by characteristics of the evolved image rather than dependent on the number of iterations. Among the several PDE based techniques, curvature flows appear to be highly reliable for strongly noisy images compared to image diffusion processes.
In the present paper, we introduce a regularized curvature flow (RCF) that admits non-trivial steady states. It is based on a measure of the local curve smoothness that takes into account regularity of the curve curvature and serves as stopping term in the mean curvature flow. We prove that this measure decreases over the orbits of RCF, which endows the method with a natural stop criterion in terms of the magnitude of this measure. Further, in its discrete version it produces steady states consisting of piece-wise regular curves. Numerical experiments made on synthetic shapes corrupted with different kinds of noise show the abilities and limitations of each of the current geometric flows and the benefits of RCF. Finally, we present results on real images that illustrate the usefulness of the present approach in practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GiR2004c Serial 1532
Permanent link to this record
 

 
Author Fei Yang; Yongmei Cheng; Joost Van de Weijer; Mikhail Mozerov
Title Improved Discrete Optical Flow Estimation With Triple Image Matching Cost Type Journal Article
Year 2020 Publication IEEE Access Abbreviated Journal ACCESS
Volume 8 Issue Pages 17093 - 17102
Keywords
Abstract (up) Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ YCW2020 Serial 3345
Permanent link to this record
 

 
Author G.Blasco; Simone Balocco; J.Puig; J.Sanchez-Gonzalez; W.Ricart; J.Daunis-I-Estadella; X.Molina; S.Pedraza; J.M.Fernandez-Real
Title Carotid pulse wave velocity by magnetic resonance imaging is increased in middle-aged subjects with the metabolic syndrome Type Journal Article
Year 2015 Publication International Journal of Cardiovascular Imaging Abbreviated Journal ICJI
Volume 31 Issue 3 Pages 603-612
Keywords Metabolic syndrome; Arterial stiffness; Pulse wave velocity; Carotid artery; Magnetic resonance
Abstract (up) Arterial pulse wave velocity (PWV), an independent predictor of cardiovascular disease, physiologically increases with age; however, growing evidence suggests metabolic syndrome (MetS) accelerates this increase. Magnetic resonance imaging (MRI) enables reliable noninvasive assessment of arterial stiffness by measuring arterial PWV in specific vascular segments. We investigated the association between the presence of MetS and its components with carotid PWV (cPWV) in asymptomatic subjects without diabetes. We assessed cPWV by MRI in 61 individuals (mean age, 55.3 ± 14.1 years; median age, 55 years): 30 with MetS and 31 controls with similar age, sex, body mass index, and LDL-cholesterol levels. The study population was dichotomized by the median age. To remove the physiological association between PWV and age, unpaired t tests and multiple regression analyses were performed using the residuals of the regression between PWV and age. cPWV was higher in middle-aged subjects with MetS than in those without (p = 0.001), but no differences were found in elder subjects (p = 0.313). cPWV was associated with diastolic blood pressure (r = 0.276, p = 0.033) and waist circumference (r = 0.268, p = 0.038). The presence of MetS was associated with increased cPWV regardless of age, sex, blood pressure, and waist (p = 0.007). The MetS components contributing independently to an increased cPWV were hypertension (p = 0.018) and hypertriglyceridemia (p = 0.002). The presence of MetS is associated with an increased cPWV in middle-aged subjects. In particular, hypertension and hypertriglyceridemia may contribute to early progression of carotid stiffness.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-5794 ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ BBP2015 Serial 2670
Permanent link to this record