|   | 
Details
   web
Records
Author Iiris Lusi; Sergio Escalera; Gholamreza Anbarjafari
Title Human Head Pose Estimation on SASE database using Random Hough Regression Forests Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal
Volume 10165 Issue Pages
Keywords
Abstract (up) In recent years head pose estimation has become an important task in face analysis scenarios. Given the availability of high resolution 3D sensors, the design of a high resolution head pose database would be beneficial for the community. In this paper, Random Hough Forests are used to estimate 3D head pose and location on a new 3D head database, SASE, which represents the baseline performance on the new data for an upcoming international head pose estimation competition. The data in SASE is acquired with a Microsoft Kinect 2 camera, including the RGB and depth information of 50 subjects with a large sample of head poses, allowing us to test methods for real-life scenarios. We briefly review the database while showing baseline head pose estimation results based on Random Hough Forests.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRW
Notes HuPBA; Approved no
Call Number Admin @ si @ LEA2016b Serial 2910
Permanent link to this record
 

 
Author Fatemeh Noroozi; Marina Marjanovic; Angelina Njegus; Sergio Escalera; Gholamreza Anbarjafari
Title Fusion of Classifier Predictions for Audio-Visual Emotion Recognition Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) In this paper is presented a novel multimodal emotion recognition system which is based on the analysis of audio and visual cues. MFCC-based features are extracted from the audio channel and facial landmark geometric relations are
computed from visual data. Both sets of features are learnt separately using state-of-the-art classifiers. In addition, we summarise each emotion video into a reduced set of key-frames, which are learnt in order to visually discriminate emotions by means of a Convolutional Neural Network. Finally, confidence
outputs of all classifiers from all modalities are used to define a new feature space to be learnt for final emotion prediction, in a late fusion/stacking fashion. The conducted experiments on eNTERFACE’05 database show significant performance improvements of our proposed system in comparison to state-of-the-art approaches.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRW
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ NMN2016 Serial 2839
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov
Title Improving Text Proposals for Scene Images with Fully Convolutional Networks Type Conference Article
Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords
Abstract (up) Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art.
Address Cancun; Mexico; December 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRW
Notes DAG; LAMP; 600.084 Approved no
Call Number Admin @ si @ BGN2016 Serial 2823
Permanent link to this record