|   | 
Details
   web
Records
Author Antoni Rosell; Sonia Baeza; S. Garcia-Reina; JL. Mate; Ignasi Guasch; I. Nogueira; I. Garcia-Olive; Guillermo Torres; Carles Sanchez; Debora Gil
Title Radiomics to increase the effectiveness of lung cancer screening programs. Radiolung preliminary results. Type Journal Article
Year 2022 Publication European Respiratory Journal Abbreviated Journal ERJ
Volume 60 Issue 66 Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up)
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number Admin @ si @ RBG2022c Serial 3835
Permanent link to this record
 

 
Author Jorge Charco; Angel Sappa; Boris X. Vintimilla; Henry Velesaca
Title Human Body Pose Estimation in Multi-view Environments Type Book Chapter
Year 2022 Publication ICT Applications for Smart Cities. Intelligent Systems Reference Library Abbreviated Journal
Volume 224 Issue Pages 79-99
Keywords
Abstract This chapter tackles the challenging problem of human pose estimation in multi-view environments to handle scenes with self-occlusions. The proposed approach starts by first estimating the camera pose—extrinsic parameters—in multi-view scenarios; due to few real image datasets, different virtual scenes are generated by using a special simulator, for training and testing the proposed convolutional neural network based approaches. Then, these extrinsic parameters are used to establish the relation between different cameras into the multi-view scheme, which captures the pose of the person from different points of view at the same time. The proposed multi-view scheme allows to robustly estimate human body joints’ position even in situations where they are occluded. This would help to avoid possible false alarms in behavioral analysis systems of smart cities, as well as applications for physical therapy, safe moving assistance for the elderly among other. The chapter concludes by presenting experimental results in real scenes by using state-of-the-art and the proposed multi-view approaches.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ CSV2022b Serial 3810
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Rafael E. Rivadeneira; Angel Sanchez; Angel Morera
Title Video Analytics in Urban Environments: Challenges and Approaches Type Book Chapter
Year 2022 Publication ICT Applications for Smart Cities Abbreviated Journal
Volume 224 Issue Pages 101-121
Keywords
Abstract This chapter reviews state-of-the-art approaches generally present in the pipeline of video analytics on urban scenarios. A typical pipeline is used to cluster approaches in the literature, including image preprocessing, object detection, object classification, and object tracking modules. Then, a review of recent approaches for each module is given. Additionally, applications and datasets generally used for training and evaluating the performance of these approaches are included. This chapter does not pretend to be an exhaustive review of state-of-the-art video analytics in urban environments but rather an illustration of some of the different recent contributions. The chapter concludes by presenting current trends in video analytics in the urban scenario field.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ VSC2022 Serial 3811
Permanent link to this record
 

 
Author Angel Sappa (ed)
Title ICT Applications for Smart Cities Type Book Whole
Year 2022 Publication ICT Applications for Smart Cities Abbreviated Journal
Volume 224 Issue Pages
Keywords Computational Intelligence; Intelligent Systems; Smart Cities; ICT Applications; Machine Learning; Pattern Recognition; Computer Vision; Image Processing
Abstract Part of the book series: Intelligent Systems Reference Library (ISRL)

This book is the result of four-year work in the framework of the Ibero-American Research Network TICs4CI funded by the CYTED program. In the following decades, 85% of the world's population is expected to live in cities; hence, urban centers should be prepared to provide smart solutions for problems ranging from video surveillance and intelligent mobility to the solid waste recycling processes, just to mention a few. More specifically, the book describes underlying technologies and practical implementations of several successful case studies of ICTs developed in the following smart city areas:

• Urban environment monitoring
• Intelligent mobility
• Waste recycling processes
• Video surveillance
• Computer-aided diagnose in healthcare systems
• Computer vision-based approaches for efficiency in production processes

The book is intended for researchers and engineers in the field of ICTs for smart cities, as well as to anyone who wants to know about state-of-the-art approaches and challenges on this field.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ Sap2022 Serial 3812
Permanent link to this record
 

 
Author Victoria Ruiz; Angel Sanchez; Jose F. Velez; Bogdan Raducanu
Title Waste Classification with Small Datasets and Limited Resources Type Book Chapter
Year 2022 Publication ICT Applications for Smart Cities. Intelligent Systems Reference Library Abbreviated Journal
Volume 224 Issue Pages 185-203
Keywords
Abstract Automatic waste recycling has become a very important societal challenge nowadays, raising people’s awareness for a cleaner environment and a more sustainable lifestyle. With the transition to Smart Cities, and thanks to advanced ICT solutions, this problem has received a new impulse. The waste recycling focus has shifted from general waste treating facilities to an individual responsibility, where each person should become aware of selective waste separation. The surge of the mobile devices, accompanied by a significant increase in computation power, has potentiated and facilitated this individual role. An automated image-based waste classification mechanism can help with a more efficient recycling and a reduction of contamination from residuals. Despite the good results achieved with the deep learning methodologies for this task, the Achille’s heel is that they require large neural networks which need significant computational resources for training and therefore are not suitable for mobile devices. To circumvent this apparently intractable problem, we will rely on knowledge distillation in order to transfer the network’s knowledge from a larger network (called ‘teacher’) to a smaller, more compact one, (referred as ‘student’) and thus making it possible the task of image classification on a device with limited resources. For evaluation, we considered as ‘teachers’ large architectures such as InceptionResNet or DenseNet and as ‘students’, several configurations of the MobileNets. We used the publicly available TrashNet dataset to demonstrate that the distillation process does not significantly affect system’s performance (e.g. classification accuracy) of the student network.
Address September 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) ISRL
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06306-0 Medium
Area Expedition Conference
Notes LAMP Approved no
Call Number Admin @ si @ Serial 3813
Permanent link to this record
 

 
Author Giuseppe De Gregorio; Sanket Biswas; Mohamed Ali Souibgui; Asma Bensalah; Josep Llados; Alicia Fornes; Angelo Marcelli
Title A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 3-12
Keywords N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
Abstract Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ GBS2022 Serial 3733
Permanent link to this record
 

 
Author Asma Bensalah; Alicia Fornes; Cristina Carmona_Duarte; Josep Llados
Title Easing Automatic Neurorehabilitation via Classification and Smoothness Analysis Type Conference Article
Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal
Volume 13424 Issue Pages 336-348
Keywords Neurorehabilitation; Upper-lim; Movement classification; Movement smoothness; Deep learning; Jerk
Abstract Assessing the quality of movements for post-stroke patients during the rehabilitation phase is vital given that there is no standard stroke rehabilitation plan for all the patients. In fact, it depends basically on the patient’s functional independence and its progress along the rehabilitation sessions. To tackle this challenge and make neurorehabilitation more agile, we propose an automatic assessment pipeline that starts by recognising patients’ movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures. A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients. We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients’ progress during the rehabilitation sessions that correspond to the clinicians’ findings about each case.
Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ BFC2022 Serial 3738
Permanent link to this record
 

 
Author Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos
Title The RPM3D Project: 3D Kinematics for Remote Patient Monitoring Type Conference Article
Year 2022 Publication Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 Abbreviated Journal
Volume 13424 Issue Pages 217-226
Keywords Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics
Abstract This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases.
Address June 7-9, 2022, Las Palmas de Gran Canaria, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IGS
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ FBC2022 Serial 3739
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes
Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 171-184
Keywords Object detection; Optical music recognition; Graph neural network
Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICFHR
Notes DAG; 600.162; 600.140; 602.230 Approved no
Call Number Admin @ si @ BRF2022b Serial 3740
Permanent link to this record
 

 
Author Emanuele Vivoli; Ali Furkan Biten; Andres Mafla; Dimosthenis Karatzas; Lluis Gomez
Title MUST-VQA: MUltilingual Scene-text VQA Type Conference Article
Year 2022 Publication Proceedings European Conference on Computer Vision Workshops Abbreviated Journal
Volume 13804 Issue Pages 345–358
Keywords Visual question answering; Scene text; Translation robustness; Multilingual models; Zero-shot transfer; Power of language models
Abstract In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.
Address Tel-Aviv; Israel; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes DAG; 302.105; 600.155; 611.002 Approved no
Call Number Admin @ si @ VBM2022 Serial 3770
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Andres Mafla; Ali Furkan Biten; Oren Nuriel; Aviad Aberdam; Shai Mazor; Ron Litman; Dimosthenis Karatzas
Title Out-of-Vocabulary Challenge Report Type Conference Article
Year 2022 Publication Proceedings European Conference on Computer Vision Workshops Abbreviated Journal
Volume 13804 Issue Pages 359–375
Keywords
Abstract This paper presents final results of the Out-Of-Vocabulary 2022 (OOV) challenge. The OOV contest introduces an important aspect that is not commonly studied by Optical Character Recognition (OCR) models, namely, the recognition of unseen scene text instances at training time. The competition compiles a collection of public scene text datasets comprising of 326,385 images with 4,864,405 scene text instances, thus covering a wide range of data distributions. A new and independent validation and test set is formed with scene text instances that are out of vocabulary at training time. The competition was structured in two tasks, end-to-end and cropped scene text recognition respectively. A thorough analysis of results from baselines and different participants is presented. Interestingly, current state-of-the-art models show a significant performance gap under the newly studied setting. We conclude that the OOV dataset proposed in this challenge will be an essential area to be explored in order to develop scene text models that achieve more robust and generalized predictions.
Address Tel-Aviv; Israel; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCVW
Notes DAG; 600.155; 302.105; 611.002 Approved no
Call Number Admin @ si @ GMB2022 Serial 3771
Permanent link to this record
 

 
Author Marc Oliu; Sarah Adel Bargal; Stan Sclaroff; Xavier Baro; Sergio Escalera
Title Multi-varied Cumulative Alignment for Domain Adaptation Type Conference Article
Year 2022 Publication 6th International Conference on Image Analysis and Processing Abbreviated Journal
Volume 13232 Issue Pages 324–334
Keywords Domain Adaptation; Computer vision; Neural networks
Abstract Domain Adaptation methods can be classified into two basic families of approaches: non-parametric and parametric. Non-parametric approaches depend on statistical indicators such as feature covariances to minimize the domain shift. Non-parametric approaches tend to be fast to compute and require no additional parameters, but they are unable to leverage probability density functions with complex internal structures. Parametric approaches, on the other hand, use models of the probability distributions as surrogates in minimizing the domain shift, but they require additional trainable parameters to model these distributions. In this work, we propose a new statistical approach to minimizing the domain shift based on stochastically projecting and evaluating the cumulative density function in both domains. As with non-parametric approaches, there are no additional trainable parameters. As with parametric approaches, the internal structure of both domains’ probability distributions is considered, thus leveraging a higher amount of information when reducing the domain shift. Evaluation on standard datasets used for Domain Adaptation shows better performance of the proposed model compared to non-parametric approaches while being competitive with parametric ones. (Code available at: https://github.com/moliusimon/mca).
Address Indonesia; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIAP
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ OAS2022 Serial 3777
Permanent link to this record
 

 
Author Nil Ballus; Bhalaji Nagarajan; Petia Radeva
Title Opt-SSL: An Enhanced Self-Supervised Framework for Food Recognition Type Conference Article
Year 2022 Publication 10th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume 13256 Issue Pages
Keywords Self-supervised; Contrastive learning; Food recognition
Abstract Self-supervised Learning has been showing upbeat performance in several computer vision tasks. The popular contrastive methods make use of a Siamese architecture with different loss functions. In this work, we go deeper into two very recent state of the art frameworks, namely, SimSiam and Barlow Twins. Inspired by them, we propose a new self-supervised learning method we call Opt-SSL that combines both image and feature contrasting. We validate the proposed method on the food recognition task, showing that our proposed framework enables the self-learning networks to learn better visual representations.
Address Aveiro; Portugal; May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IbPRIA
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ BNR2022 Serial 3782
Permanent link to this record
 

 
Author Sergi Garcia Bordils; George Tom; Sangeeth Reddy; Minesh Mathew; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas
Title Read While You Drive-Multilingual Text Tracking on the Road Type Conference Article
Year 2022 Publication 15th IAPR International workshop on document analysis systems Abbreviated Journal
Volume 13237 Issue Pages 756–770
Keywords
Abstract Visual data obtained during driving scenarios usually contain large amounts of text that conveys semantic information necessary to analyse the urban environment and is integral to the traffic control plan. Yet, research on autonomous driving or driver assistance systems typically ignores this information. To advance research in this direction, we present RoadText-3K, a large driving video dataset with fully annotated text. RoadText-3K is three times bigger than its predecessor and contains data from varied geographical locations, unconstrained driving conditions and multiple languages and scripts. We offer a comprehensive analysis of tracking by detection and detection by tracking methods exploring the limits of state-of-the-art text detection. Finally, we propose a new end-to-end trainable tracking model that yields state-of-the-art results on this challenging dataset. Our experiments demonstrate the complexity and variability of RoadText-3K and establish a new, realistic benchmark for scene text tracking in the wild.
Address La Rochelle; France; May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-06554-5 Medium
Area Expedition Conference DAS
Notes DAG; 600.155; 611.022; 611.004 Approved no
Call Number Admin @ si @ GTR2022 Serial 3783
Permanent link to this record
 

 
Author Andrea Gemelli; Sanket Biswas; Enrico Civitelli; Josep Llados; Simone Marinai
Title Doc2Graph: A Task Agnostic Document Understanding Framework Based on Graph Neural Networks Type Conference Article
Year 2022 Publication 17th European Conference on Computer Vision Workshops Abbreviated Journal
Volume 13804 Issue Pages 329–344
Keywords
Abstract Geometric Deep Learning has recently attracted significant interest in a wide range of machine learning fields, including document analysis. The application of Graph Neural Networks (GNNs) has become crucial in various document-related tasks since they can unravel important structural patterns, fundamental in key information extraction processes. Previous works in the literature propose task-driven models and do not take into account the full power of graphs. We propose Doc2Graph, a task-agnostic document understanding framework based on a GNN model, to solve different tasks given different types of documents. We evaluated our approach on two challenging datasets for key information extraction in form understanding, invoice layout analysis and table detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title (up) LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-25068-2 Medium
Area Expedition Conference ECCV-TiE
Notes DAG; 600.162; 600.140; 110.312 Approved no
Call Number Admin @ si @ GBC2022 Serial 3795
Permanent link to this record