|   | 
Details
   web
Records
Author Manisha Das; Deep Gupta; Petia Radeva; Ashwini M. Bakde
Title Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid ℓ1 - ℓ0 layer decomposition domain Type Journal Article
Year 2021 Publication Biomedical Signal Processing and Control Abbreviated Journal (down) BSPC
Volume 68 Issue Pages 102535
Keywords
Abstract Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid ℓ1 − ℓ0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale ℓ1 − ℓ0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid ℓ1 − ℓ0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ DGR2021b Serial 3636
Permanent link to this record
 

 
Author David Roche; Debora Gil; Jesus Giraldo
Title Mechanistic analysis of the function of agonists and allosteric modulators: Reconciling two-state and operational models Type Journal Article
Year 2013 Publication British Journal of Pharmacology Abbreviated Journal (down) BJP
Volume 169 Issue 6 Pages 1189-202
Keywords
Abstract Two-state and operational models of both agonism and allosterism are compared to identify and characterize common pharmacological parameters. To account for the receptor-dependent basal response, constitutive receptor activity is considered in the operational models. By arranging two-state models as the fraction of active receptors and operational models as the fractional response relative to the maximum effect of the system, a one-by-one correspondence between parameters is found. The comparative analysis allows a better understanding of complex allosteric interactions. In particular, the inclusion of constitutive receptor activity in the operational model of allosterism allows the characterization of modulators able to lower the basal response of the system; that is, allosteric modulators with negative intrinsic efficacy. Theoretical simulations and overall goodness of fit of the models to simulated data suggest that it is feasible to apply the models to experimental data and constitute one step forward in receptor theory formalism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.044; 605.203 Approved no
Call Number IAM @ iam @ RGG2013b Serial 2195
Permanent link to this record
 

 
Author Marc Oliu; Ciprian Corneanu; Kamal Nasrollahi; Olegs Nikisins; Sergio Escalera; Yunlian Sun; Haiqing Li; Zhenan Sun; Thomas B. Moeslund; Modris Greitans
Title Improved RGB-D-T based Face Recognition Type Journal Article
Year 2016 Publication IET Biometrics Abbreviated Journal (down) BIO
Volume 5 Issue 4 Pages 297 - 303
Keywords
Abstract Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB; Approved no
Call Number Admin @ si @ OCN2016 Serial 2854
Permanent link to this record
 

 
Author Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li
Title Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review Type Journal Article
Year 2020 Publication IET Biometrics Abbreviated Journal (down) BIO
Volume 10 Issue 1 Pages 24-43
Keywords
Abstract Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ LLW2020b Serial 3523
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Antonio Hernandez; Sergio Escalera; Xavier Jimenez ; Oscar Vilarroya; Petia Radeva
Title A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder Type Journal Article
Year 2011 Publication BioMedical Engineering Online Abbreviated Journal (down) BEO
Volume 10 Issue 105 Pages 1-23
Keywords Brain caudate nucleus; segmentation; MRI; atlas-based strategy; Graph Cut framework
Abstract Background
Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations.

Method
We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure.

Results
We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis.

Conclusion
CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-925X ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ ISH2011 Serial 1882
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil
Title A Flexible Outlier Detector Based on a Topology Given by Graph Communities Type Journal Article
Year 2022 Publication Big Data Research Abbreviated Journal (down) BDR
Volume 29 Issue Pages 100332
Keywords Classification algorithms; Detection algorithms; Description of feature space local structure; Graph communities; Machine learning algorithms; Outlier detectors
Abstract Outlier detection is essential for optimal performance of machine learning methods and statistical predictive models. Their detection is especially determinant in small sample size unbalanced problems, since in such settings outliers become highly influential and significantly bias models. This particular experimental settings are usual in medical applications, like diagnosis of rare pathologies, outcome of experimental personalized treatments or pandemic emergencies. In contrast to population-based methods, neighborhood based local approaches compute an outlier score from the neighbors of each sample, are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. A main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters, like the number of neighbors.
This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world and synthetic data sets show that our approach outperforms, both, local and global strategies in multi and single view settings.
Address August 28, 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; IAM; 600.140; 600.121; 600.139; 600.145; 600.159 Approved no
Call Number Admin @ si @ RBG2022a Serial 3718
Permanent link to this record
 

 
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez
Title A reduced feature set for driver head pose estimation Type Journal Article
Year 2016 Publication Applied Soft Computing Abbreviated Journal (down) ASOC
Volume 45 Issue Pages 98-107
Keywords Head pose estimation; driving performance evaluation; subspace based methods; linear regression
Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.076; Approved no
Call Number Admin @ si @ DHL2016 Serial 2760
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate
Title Análisis 3d de la territorialidad cromosómica en células espermatogénicas: explorando la infertilidad desde un nuevo prisma Type Journal
Year 2017 Publication Revista Asociación para el Estudio de la Biología de la Reproducción Abbreviated Journal (down) ASEBIR
Volume 22 Issue 2 Pages 105
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017d Serial 3042
Permanent link to this record
 

 
Author Anders Skaarup Johansen; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund
Title Who Cares about the Weather? Inferring Weather Conditions for Weather-Aware Object Detection in Thermal Images Type Journal Article
Year 2023 Publication Applied Sciences Abbreviated Journal (down) AS
Volume 13 Issue 18 Pages
Keywords thermal; object detection; concept drift; conditioning; weather recognition
Abstract Deployments of real-world object detection systems often experience a degradation in performance over time due to concept drift. Systems that leverage thermal cameras are especially susceptible because the respective thermal signatures of objects and their surroundings are highly sensitive to environmental changes. In this study, two types of weather-aware latent conditioning methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that predicts weather-related information while conditioning intermediate layers of the object detector. While the conditioning methods proposed do not directly improve the accuracy of baseline detectors, it can be observed that conditioned networks manage to extract a weather-related signal from the thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ SNE2023 Serial 3983
Permanent link to this record
 

 
Author Arnau Ramisa; Adriana Tapus; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras
Title Robust Vision-Based Localization using Combinations of Local Feature Regions Detectors Type Journal Article
Year 2009 Publication Autonomous Robots Abbreviated Journal (down) AR
Volume 27 Issue 4 Pages 373-385
Keywords
Abstract This paper presents a vision-based approach for mobile robot localization. The model of the environment is topological. The new approach characterizes a place using a signature. This signature consists of a constellation of descriptors computed over different types of local affine covariant regions extracted from an omnidirectional image acquired rotating a standard camera with a pan-tilt unit. This type of representation permits a reliable and distinctive environment modelling. Our objectives were to validate the proposed method in indoor environments and, also, to find out if the combination of complementary local feature region detectors improves the localization versus using a single region detector. Our experimental results show that if false matches are effectively rejected, the combination of different covariant affine region detectors increases notably the performance of the approach by combining the different strengths of the individual detectors. In order to reduce the localization time, two strategies are evaluated: re-ranking the map nodes using a global similarity measure and using standard perspective view field of 45°.
In order to systematically test topological localization methods, another contribution proposed in this work is a novel method to see the degradation in localization performance as the robot moves away from the point where the original signature was acquired. This allows to know the robustness of the proposed signature. In order for this to be effective, it must be done in several, variated, environments that test all the possible situations in which the robot may have to perform localization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-5593 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RTA2009 Serial 1245
Permanent link to this record
 

 
Author Pau Rodriguez; Diego Velazquez; Guillem Cucurull; Josep M. Gonfaus; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez
Title Personality Trait Analysis in Social Networks Based on Weakly Supervised Learning of Shared Images Type Journal Article
Year 2020 Publication Applied Sciences Abbreviated Journal (down) APPLSCI
Volume 10 Issue 22 Pages 8170
Keywords sentiment analysis, personality trait analysis; weakly-supervised learning; visual classification; OCEAN model; social networks
Abstract Social networks have attracted the attention of psychologists, as the behavior of users can be used to assess personality traits, and to detect sentiments and critical mental situations such as depression or suicidal tendencies. Recently, the increasing amount of image uploads to social networks has shifted the focus from text to image-based personality assessment. However, obtaining the ground-truth requires giving personality questionnaires to the users, making the process very costly and slow, and hindering research on large populations. In this paper, we demonstrate that it is possible to predict which images are most associated with each personality trait of the OCEAN personality model, without requiring ground-truth personality labels. Namely, we present a weakly supervised framework which shows that the personality scores obtained using specific images textually associated with particular personality traits are highly correlated with scores obtained using standard text-based personality questionnaires. We trained an OCEAN trait model based on Convolutional Neural Networks (CNNs), learned from 120K pictures posted with specific textual hashtags, to infer whether the personality scores from the images uploaded by users are consistent with those scores obtained from text. In order to validate our claims, we performed a personality test on a heterogeneous group of 280 human subjects, showing that our model successfully predicts which kind of image will match a person with a given level of a trait. Looking at the results, we obtained evidence that personality is not only correlated with text, but with image content too. Interestingly, different visual patterns emerged from those images most liked by persons with a particular personality trait: for instance, pictures most associated with high conscientiousness usually contained healthy food, while low conscientiousness pictures contained injuries, guns, and alcohol. These findings could pave the way to complement text-based personality questionnaires with image-based questions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.119 Approved no
Call Number Admin @ si @ RVC2020b Serial 3553
Permanent link to this record
 

 
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil
Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal (down) APPLSCI
Volume 12 Issue 3 Pages 1568
Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Address Jan 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.145 Approved no
Call Number Admin @ si @ TBS2022 Serial 3699
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil
Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal (down) APPLSCI
Volume 12 Issue 5 Pages 2298
Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Address February 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no
Call Number Admin @ si @ HYF2022 Serial 3720
Permanent link to this record
 

 
Author Carolina Malagelada; Michal Drozdzal; Santiago Segui; Sara Mendez; Jordi Vitria; Petia Radeva; Javier Santos; Anna Accarino; Juan R. Malagelada; Fernando Azpiroz
Title Classification of functional bowel disorders by objective physiological criteria based on endoluminal image analysis Type Journal Article
Year 2015 Publication American Journal of Physiology-Gastrointestinal and Liver Physiology Abbreviated Journal (down) AJPGI
Volume 309 Issue 6 Pages G413--G419
Keywords capsule endoscopy; computer vision analysis; functional bowel disorders; intestinal motility; machine learning
Abstract We have previously developed an original method to evaluate small bowel motor function based on computer vision analysis of endoluminal images obtained by capsule endoscopy. Our aim was to demonstrate intestinal motor abnormalities in patients with functional bowel disorders by endoluminal vision analysis. Patients with functional bowel disorders (n = 205) and healthy subjects (n = 136) ingested the endoscopic capsule (Pillcam-SB2, Given-Imaging) after overnight fast and 45 min after gastric exit of the capsule a liquid meal (300 ml, 1 kcal/ml) was administered. Endoluminal image analysis was performed by computer vision and machine learning techniques to define the normal range and to identify clusters of abnormal function. After training the algorithm, we used 196 patients and 48 healthy subjects, completely naive, as test set. In the test set, 51 patients (26%) were detected outside the normal range (P < 0.001 vs. 3 healthy subjects) and clustered into hypo- and hyperdynamic subgroups compared with healthy subjects. Patients with hypodynamic behavior (n = 38) exhibited less luminal closure sequences (41 ± 2% of the recording time vs. 61 ± 2%; P < 0.001) and more static sequences (38 ± 3 vs. 20 ± 2%; P < 0.001); in contrast, patients with hyperdynamic behavior (n = 13) had an increased proportion of luminal closure sequences (73 ± 4 vs. 61 ± 2%; P = 0.029) and more high-motion sequences (3 ± 1 vs. 0.5 ± 0.1%; P < 0.001). Applying an original methodology, we have developed a novel classification of functional gut disorders based on objective, physiological criteria of small bowel function.
Address
Corporate Author Thesis
Publisher American Physiological Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; OR;MV Approved no
Call Number Admin @ si @ MDS2015 Serial 2666
Permanent link to this record
 

 
Author Maurizio Mencuccini; Jordi Martinez-Vilalta; Josep Piñol; Lasse Loepfe; Mireia Burnat ; Xavier Alvarez; Juan Camacho; Debora Gil
Title A quantitative and statistically robust method for the determination of xylem conduit spatial distribution Type Journal Article
Year 2010 Publication American Journal of Botany Abbreviated Journal (down) AJB
Volume 97 Issue 8 Pages 1247-1259
Keywords Geyer; hydraulic conductivity; point pattern analysis; Ripley; Spatstat; vessel clusters; xylem anatomy; xylem network
Abstract Premise of the study: Because of their limited length, xylem conduits need to connect to each other to maintain water transport from roots to leaves. Conduit spatial distribution in a cross section plays an important role in aiding this connectivity. While indices of conduit spatial distribution already exist, they are not well defined statistically. * Methods: We used point pattern analysis to derive new spatial indices. One hundred and five cross-sectional images from different species were transformed into binary images. The resulting point patterns, based on the locations of the conduit centers-of-area, were analyzed to determine whether they departed from randomness. Conduit distribution was then modeled using a spatially explicit stochastic model. * Key results: The presence of conduit randomness, uniformity, or aggregation depended on the spatial scale of the analysis. The large majority of the images showed patterns significantly different from randomness at least at one spatial scale. A strong phylogenetic signal was detected in the spatial variables. * Conclusions: Conduit spatial arrangement has been largely conserved during evolution, especially at small spatial scales. Species in which conduits were aggregated in clusters had a lower conduit density compared to those with uniform distribution. Statistically sound spatial indices must be employed as an aid in the characterization of distributional patterns across species and in models of xylem water transport. Point pattern analysis is a very useful tool in identifying spatial patterns.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ MMG2010 Serial 1623
Permanent link to this record