|   | 
Details
   web
Records
Author Eloi Puertas; Sergio Escalera; Oriol Pujol
Title Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification Type Journal Article
Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA
Volume 18 Issue 2 Pages 247-261
Keywords Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification
Abstract In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7541 ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ PEP2013 Serial 2251
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera
Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA
Volume 18 Issue 4 Pages 845-860
Keywords Multiclass classification; Pairwise approach; One-versus-one
Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7541 ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ BGE2014 Serial 2441
Permanent link to this record
 

 
Author Alejandro Cartas; Juan Marin; Petia Radeva; Mariella Dimiccoli
Title Batch-based activity recognition from egocentric photo-streams revisited Type Journal Article
Year 2018 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA
Volume 21 Issue 4 Pages 953–965
Keywords Egocentric vision; Lifelogging; Activity recognition; Deep learning; Recurrent neural networks
Abstract Wearable cameras can gather large amounts of image data that provide rich visual information about the daily activities of the wearer. Motivated by the large number of health applications that could be enabled by the automatic recognition of daily activities, such as lifestyle characterization for habit improvement, context-aware personal assistance and tele-rehabilitation services, we propose a system to classify 21 daily activities from photo-streams acquired by a wearable photo-camera. Our approach combines the advantages of a late fusion ensemble strategy relying on convolutional neural networks at image level with the ability of recurrent neural networks to account for the temporal evolution of high-level features in photo-streams without relying on event boundaries. The proposed batch-based approach achieved an overall accuracy of 89.85%, outperforming state-of-the-art end-to-end methodologies. These results were achieved on a dataset consists of 44,902 egocentric pictures from three persons captured during 26 days in average.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ CMR2018 Serial 3186
Permanent link to this record
 

 
Author Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone
Title DSD: document sparse-based denoising algorithm Type Journal Article
Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal (up) PAA
Volume 22 Issue 1 Pages 177–186
Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models
Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 600.140; 600.121 Approved no
Call Number Admin @ si @ DRT2019 Serial 3254
Permanent link to this record
 

 
Author Zhen Xu; Sergio Escalera; Adrien Pavao; Magali Richard; Wei-Wei Tu; Quanming Yao; Huan Zhao; Isabelle Guyon
Title Codabench: Flexible, easy-to-use, and reproducible meta-benchmark platform Type Journal Article
Year 2022 Publication Patterns Abbreviated Journal (up) PATTERNS
Volume 3 Issue 7 Pages 100543
Keywords Machine learning; data science; benchmark platform; reproducibility; competitions
Abstract Obtaining a standardized benchmark of computational methods is a major issue in data-science communities. Dedicated frameworks enabling fair benchmarking in a unified environment are yet to be developed. Here, we introduce Codabench, a meta-benchmark platform that is open sourced and community driven for benchmarking algorithms or software agents versus datasets or tasks. A public instance of Codabench is open to everyone free of charge and allows benchmark organizers to fairly compare submissions under the same setting (software, hardware, data, algorithms), with custom protocols and data formats. Codabench has unique features facilitating easy organization of flexible and reproducible benchmarks, such as the possibility of reusing templates of benchmarks and supplying compute resources on demand. Codabench has been used internally and externally on various applications, receiving more than 130 users and 2,500 submissions. As illustrative use cases, we introduce four diverse benchmarks covering graph machine learning, cancer heterogeneity, clinical diagnosis, and reinforcement learning.
Address June 24, 2022
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ XEP2022 Serial 3764
Permanent link to this record
 

 
Author A.S. Coquel; Jean-Pascal Jacob; M. Primet; A. Demarez; Mariella Dimiccoli; T. Julou; L. Moisan; A. Lindner; H. Berry
Title Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect Type Journal Article
Year 2013 Publication Plos Computational Biology Abbreviated Journal (up) PCB
Volume 9 Issue 4 Pages
Keywords
Abstract Aggregates of misfolded proteins are a hallmark of many age-related diseases. Recently, they have been linked to aging of Escherichia coli (E. coli) where protein aggregates accumulate at the old pole region of the aging bacterium. Because of the potential of E. coli as a model organism, elucidating aging and protein aggregation in this bacterium may pave the way to significant advances in our global understanding of aging. A first obstacle along this path is to decipher the mechanisms by which protein aggregates are targeted to specific intercellular locations. Here, using an integrated approach based on individual-based modeling, time-lapse fluorescence microscopy and automated image analysis, we show that the movement of aging-related protein aggregates in E. coli is purely diffusive (Brownian). Using single-particle tracking of protein aggregates in live E. coli cells, we estimated the average size and diffusion constant of the aggregates. Our results provide evidence that the aggregates passively diffuse within the cell, with diffusion constants that depend on their size in agreement with the Stokes-Einstein law. However, the aggregate displacements along the cell long axis are confined to a region that roughly corresponds to the nucleoid-free space in the cell pole, thus confirming the importance of increased macromolecular crowding in the nucleoids. We thus used 3D individual-based modeling to show that these three ingredients (diffusion, aggregation and diffusion hindrance in the nucleoids) are sufficient and necessary to reproduce the available experimental data on aggregate localization in the cells. Taken together, our results strongly support the hypothesis that the localization of aging-related protein aggregates in the poles of E. coli results from the coupling of passive diffusion-aggregation with spatially non-homogeneous macromolecular crowding. They further support the importance of “soft” intracellular structuring (based on macromolecular crowding) in diffusion-based protein localization in E. coli.
Address
Corporate Author Thesis
Publisher Place of Publication Editor : Stanislav Shvartsman, Princeton University, United States of America
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @CJP2013 Serial 2786
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell
Title Ordinal pairwise method for natural images comparison Type Journal Article
Year 2009 Publication Perception Abbreviated Journal (up) PER
Volume 38 Issue Pages 180
Keywords
Abstract 38(Suppl.)ECVP Abstract Supplement
We developed a new psychophysical method to compare different colour appearance models when applied to natural scenes. The method was as follows: two images (processed by different algorithms) were displayed on a CRT monitor and observers were asked to select the most natural of them. The original images were gathered by means of a calibrated trichromatic digital camera and presented one on top of the other on a calibrated screen. The selection was made by pressing on a 6-button IR box, which allowed observers to consider not only the most natural but to rate their selection. The rating system allowed observers to register how much more natural was their chosen image (eg, much more, definitely more, slightly more), which gave us valuable extra information on the selection process. The results were analysed considering both the selection as a binary choice (using Thurstone's law of comparative judgement) and using Bradley-Terry method for ordinal comparison. Our results show a significant difference in the rating scales obtained. Although this method has been used in colour constancy algorithm comparisons, its uses are much wider, eg to compare algorithms of image compression, rendering, recolouring, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ VPV2009b Serial 1191
Permanent link to this record
 

 
Author Robert Benavente; C. Alejandro Parraga; Maria Vanrell
Title Colour categories boundaries are better defined in contextual conditions Type Journal Article
Year 2009 Publication Perception Abbreviated Journal (up) PER
Volume 38 Issue Pages 36
Keywords
Abstract In a previous experiment [Parraga et al, 2009 Journal of Imaging Science and Technology 53(3)] the boundaries between basic colour categories were measured by asking subjects to categorize colour samples presented in isolation (ie on a dark background) using a YES/NO paradigm. Results showed that some boundaries (eg green – blue) were very diffuse and the subjects' answers presented bimodal distributions, which were attributed to the emergence of non-basic categories in those regions (eg turquoise). To confirm these results we performed a new experiment focussed on the boundaries where bimodal distributions were more evident. In this new experiment rectangular colour samples were presented surrounded by random colour patches to simulate contextual conditions on a calibrated CRT monitor. The names of two neighbouring colours were shown at the bottom of the screen and subjects selected the boundary between these colours by controlling the chromaticity of the central patch, sliding it across these categories' frontier. Results show that in this new experimental paradigm, the formerly uncertain inter-colour category boundaries are better defined and the dispersions (ie the bimodal distributions) that occurred in the previous experiment disappear. These results may provide further support to Berlin and Kay's basic colour terms theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ BPV2009 Serial 1192
Permanent link to this record
 

 
Author C. Alejandro Parraga; Javier Vazquez; Maria Vanrell
Title A new cone activation-based natural images dataset Type Journal Article
Year 2009 Publication Perception Abbreviated Journal (up) PER
Volume 36 Issue Pages 180
Keywords
Abstract We generated a new dataset of digital natural images where each colour plane corresponds to the human LMS (long-, medium-, short-wavelength) cone activations. The images were chosen to represent five different visual environments (eg forest, seaside, mountain snow, urban, motorways) and were taken under natural illumination at different times of day. At the bottom-left corner of each picture there was a matte grey ball of approximately constant spectral reflectance (across the camera's response spectrum,) and nearly Lambertian reflective properties, which allows to compute (and remove, if necessary) the illuminant's colour and intensity. The camera (Sigma Foveon SD10) was calibrated by measuring its sensor's spectral responses using a set of 31 spectrally narrowband interference filters. This allowed conversion of the final camera-dependent RGB colour space into the Smith and Pokorny (1975) cone activation space by means of a polynomial transformation, optimised for a set of 1269 Munsell chip reflectances. This new method is an improvement over the usual 3 × 3 matrix transformation which is only accurate for spectrally-narrowband colours. The camera-to-LMS transformation can be recalculated to consider other non-human visual systems. The dataset is available to download from our website.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PVV2009 Serial 1193
Permanent link to this record
 

 
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell
Title Towards a general model of colour categorization which considers context Type Journal Article
Year 2010 Publication Perception. ECVP Abstract Supplement Abbreviated Journal (up) PER
Volume 39 Issue Pages 86
Keywords
Abstract In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant di erences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the di erences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly di erent(more di use) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we
completed our parametric fuzzy-sets model of colour naming space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PBV2010b Serial 1326
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga; Maria Vanrell
Title Natural Scene Statistics account for Human Cones Ratios Type Journal Article
Year 2010 Publication Perception. ECVP Abstract Supplement Abbreviated Journal (up) PER
Volume 39 Issue Pages 101
Keywords
Abstract In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant di erences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the di erences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly di erent(more di use) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we completed our parametric fuzzy-sets model of colour naming space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PPV2010 Serial 1357
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga
Title What is the best criterion for an efficient design of retinal photoreceptor mosaics? Type Journal Article
Year 2011 Publication Perception Abbreviated Journal (up) PER
Volume 40 Issue Pages 197
Keywords
Abstract The proportions of L, M and S photoreceptors in the primate retina are arguably determined by evolutionary pressure and the statistics of the visual environment. Two information theory-based approaches have been recently proposed for explaining the asymmetrical spatial densities of photoreceptors in humans. In the first approach Garrigan et al (2010 PLoS ONE 6 e1000677), a model for computing the information transmitted by cone arrays which considers the differential blurring produced by the long-wavelength accommodation of the eye’s lens is proposed. Their results explain the sparsity of S-cones but the optimum depends weakly on the L:M cone ratio. In the second approach (Penacchio et al, 2010 Perception 39 ECVP Supplement, 101), we show that human cone arrays make the visual representation scale-invariant, allowing the total entropy of the signal to be preserved while decreasing individual neurons’ entropy in further retinotopic representations. This criterion provides a thorough description of the distribution of L:M cone ratios and does not depend on differential blurring of the signal by the lens. Here, we investigate the similarities and differences of both approaches when applied to the same database. Our results support a 2-criteria optimization in the space of cone ratios whose components are arguably important and mostly unrelated.
[This work was partially funded by projects TIN2010-21771-C02-1 and Consolider-Ingenio 2010-CSD2007-00018 from the Spanish MICINN. CAP was funded by grant RYC-2007-00484]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PeP2011a Serial 1719
Permanent link to this record
 

 
Author C. Alejandro Parraga; Olivier Penacchio; Maria Vanrell
Title Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels Type Journal Article
Year 2011 Publication Perception Abbreviated Journal (up) PER
Volume 40 Issue Pages 96
Keywords
Abstract The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PPV2011 Serial 1720
Permanent link to this record
 

 
Author Xavier Otazu
Title Perceptual tone-mapping operator based on multiresolution contrast decomposition Type Abstract
Year 2012 Publication Perception Abbreviated Journal (up) PER
Volume 41 Issue Pages 86
Keywords
Abstract Tone-mapping operators (TMO) are used to display high dynamic range(HDR) images in low dynamic range (LDR) displays. Many computational and biologically inspired approaches have been used in the literature, being many of them based on multiresolution decompositions. In this work, a simple two stage model for TMO is presented. The first stage is a novel multiresolution contrast decomposition, which is inspired in a pyramidal contrast decomposition (Peli, 1990 Journal of the Optical Society of America7(10), 2032-2040).
This novel multiresolution decomposition represents the Michelson contrast of the image at different spatial scales. This multiresolution contrast representation, applied on the intensity channel of an opponent colour decomposition, is processed by a non-linear saturating model of V1 neurons (Albrecht et al, 2002 Journal ofNeurophysiology 88(2) 888-913). This saturation model depends on the visual frequency, and it has been modified in order to include information from the extended Contrast Sensitivity Function (e-CSF) (Otazu et al, 2010 Journal ofVision10(12) 5).
A set of HDR images in Radiance RGBE format (from CIS HDR Photographic Survey and Greg Ward database) have been used to test the model, obtaining a set of LDR images. The resulting LDR images do not show the usual halo or color modification artifacts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-0066 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Ota2012 Serial 2179
Permanent link to this record
 

 
Author Olivier Penacchio; Laura Dempere-Marco; Xavier Otazu
Title Switching off brightness induction through induction-reversed images Type Abstract
Year 2012 Publication Perception Abbreviated Journal (up) PER
Volume 41 Issue Pages 208
Keywords
Abstract Brightness induction is the modulation of the perceived intensity of an
area by the luminance of surrounding areas. Although V1 is traditionally regarded as
an area mostly responsive to retinal information, neurophysiological evidence
suggests that it may explicitly represent brightness information. In this work, we
investigate possible neural mechanisms underlying brightness induction. To this end,
we consider the model by Z Li (1999 Computation and Neural Systems10187-212)
which is constrained by neurophysiological data and focuses on the part of V1
responsible for contextual influences. This model, which has proven to account for
phenomena such as contour detection and preattentive segmentation, shares with
brightness induction the relevant effect of contextual influences. Importantly, the
input to our network model derives from a complete multiscale and multiorientation
wavelet decomposition, which makes it possible to recover an image reflecting the
perceived luminance and successfully accounts for well known psychophysical
effects for both static and dynamic contexts. By further considering inverse problem
techniques we define induction-reversed images: given a target image, we build an
image whose perceived luminance matches the actual luminance of the original
stimulus, thus effectively canceling out brightness induction effects. We suggest that
induction-reversed images may help remove undesired perceptual effects and can
find potential applications in fields such as radiological image interpretation
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PDO2012a Serial 2180
Permanent link to this record