|   | 
Details
   web
Records
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa
Title Multimodal Stereo Vision System: 3D Data Extraction and Algorithm Evaluation Type Journal Article
Year 2012 Publication IEEE Journal of Selected Topics in Signal Processing Abbreviated Journal (up) J-STSP
Volume 6 Issue 5 Pages 437-446
Keywords
Abstract This paper proposes an imaging system for computing sparse depth maps from multispectral images. A special stereo head consisting of an infrared and a color camera defines the proposed multimodal acquisition system. The cameras are rigidly attached so that their image planes are parallel. Details about the calibration and image rectification procedure are provided. Sparse disparity maps are obtained by the combined use of mutual information enriched with gradient information. The proposed approach is evaluated using a Receiver Operating Characteristics curve. Furthermore, a multispectral dataset, color and infrared images, together with their corresponding ground truth disparity maps, is generated and used as a test bed. Experimental results in real outdoor scenarios are provided showing its viability and that the proposed approach is not restricted to a specific domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-4553 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ BLS2012b Serial 2155
Permanent link to this record
 

 
Author Neus Salvatella; E Fernandez-Nofrerias; Francesco Ciompi; Oriol Rodriguez-Leor; H. Tizon; Xavier Carrillo; J. Mauri; Petia Radeva
Title Radial Artery Volume Changes After Administration Of Two Different Intra-arterial Drug Regimens. Assessment by Intravascular Ultrasound Type Journal Article
Year 2010 Publication Journal of the American College of Cardiology Abbreviated Journal (up) JACC
Volume 56 Issue 13s1 Pages B119
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number BCNPCL @ bcnpcl @ SFC2010b Serial 1364
Permanent link to this record
 

 
Author Ferran Poveda; Enric Marti; Debora Gil; Francesc Carreras; Manel Ballester
Title Helical Structure of Ventricular Anatomy by Diffusion Tensor Cardiac MR Tractography Type Journal Article
Year 2012 Publication Journal of American College of Cardiology Abbreviated Journal (up) JACC
Volume 5 Issue 7 Pages 754-755
Keywords
Abstract It is widely accepted that myocardial fiber architecture plays a critical role in myocardial contractility and relaxation (1). However, there is a lack of consensus about the distribution of the myocardial fibers and their spatial arrangement in the left and right ventricles. An understanding of the cardiac architecture should benefit the ventricular functional assessment, left ventricular reconstructive surgery planning, or resynchronization therapy in heart failure. Researchers have proposed several conceptual models to describe the architecture of the heart, ranging from gross dissection to histological presentation. The cardiac mesh model (2) proposes that the myocytes are arranged longitudinally and radially change their angulation along the myocardial depth. By contrast, the helical ventricular myocardial model states that the ventricular myocardium is a continuous anatomical helical layout of myocardial fibers (1
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-878X ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ PMG2012 Serial 1985
Permanent link to this record
 

 
Author Albert Ali Salah; Theo Gevers; Nicu Sebe; Alessandro Vinciarelli
Title Computer Vision for Ambient Intelligence Type Journal Article
Year 2011 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal (up) JAISE
Volume 3 Issue 3 Pages 187-191
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ SGS2011a Serial 1725
Permanent link to this record
 

 
Author Antonio Hernandez; Nadezhda Zlateva; Alexander Marinov; Miguel Reyes; Petia Radeva; Dimo Dimov; Sergio Escalera
Title Human Limb Segmentation in Depth Maps based on Spatio-Temporal Graph Cuts Optimization Type Journal Article
Year 2012 Publication Journal of Ambient Intelligence and Smart Environments Abbreviated Journal (up) JAISE
Volume 4 Issue 6 Pages 535-546
Keywords Multi-modal vision processing; Random Forest; Graph-cuts; multi-label segmentation; human body segmentation
Abstract We present a framework for object segmentation using depth maps based on Random Forest and Graph-cuts theory, and apply it to the segmentation of human limbs. First, from a set of random depth features, Random Forest is used to infer a set of label probabilities for each data sample. This vector of probabilities is used as unary term in α−β swap Graph-cuts algorithm. Moreover, depth values of spatio-temporal neighboring data points are used as boundary potentials. Results on a new multi-label human depth data set show high performance in terms of segmentation overlapping of the novel methodology compared to classical approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1876-1364 ISBN Medium
Area Expedition Conference
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ HZM2012a Serial 2006
Permanent link to this record
 

 
Author Iban Berganzo-Besga; Hector A. Orengo; Felipe Lumbreras; Paloma Aliende; Monica N. Ramsey
Title Automated detection and classification of multi-cell Phytoliths using Deep Learning-Based Algorithms Type Journal Article
Year 2022 Publication Journal of Archaeological Science Abbreviated Journal (up) JArchSci
Volume 148 Issue Pages 105654
Keywords
Abstract This paper presents an algorithm for automated detection and classification of multi-cell phytoliths, one of the major components of many archaeological and paleoenvironmental deposits. This identification, based on phytolith wave pattern, is made using a pretrained VGG19 deep learning model. This approach has been tested in three key phytolith genera for the study of agricultural origins in Near East archaeology: Avena, Hordeum and Triticum. Also, this classification has been validated at species-level using Triticum boeoticum and dicoccoides images. Due to the diversity of microscopes, cameras and chemical treatments that can influence images of phytolith slides, three types of data augmentation techniques have been implemented: rotation of the images at 45-degree angles, random colour and brightness jittering, and random blur/sharpen. The implemented workflow has resulted in an overall accuracy of 93.68% for phytolith genera, improving previous attempts. The algorithm has also demonstrated its potential to automatize the classification of phytoliths species with an overall accuracy of 100%. The open code and platforms employed to develop the algorithm assure the method's accessibility, reproducibility and reusability.
Address December 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO; 600.167 Approved no
Call Number Admin @ si @ BOL2022 Serial 3753
Permanent link to this record
 

 
Author Carlos Martin-Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir
Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type Journal Article
Year 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal (up) JBHI
Volume 27 Issue 7 Pages 3302-3313
Keywords
Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ MCI2023 Serial 3880
Permanent link to this record
 

 
Author Francisco Blanco; Felipe Lumbreras; Joan Serrat; Roswitha Siener; Silvia Serranti; Giuseppe Bonifazi; Montserrat Lopez Mesas; Manuel Valiente
Title Taking advantage of Hyperspectral Imaging classification of urinary stones against conventional IR Spectroscopy Type Journal Article
Year 2014 Publication Journal of Biomedical Optics Abbreviated Journal (up) JBiO
Volume 19 Issue 12 Pages 126004-1 - 126004-9
Keywords
Abstract The analysis of urinary stones is mandatory for the best management of the disease after the stone passage in order to prevent further stone episodes. Thus the use of an appropriate methodology for an individualized stone analysis becomes a key factor for giving the patient the most suitable treatment. A recently developed hyperspectral imaging methodology, based on pixel-to-pixel analysis of near-infrared spectral images, is compared to the reference technique in stone analysis, infrared (IR) spectroscopy. The developed classification model yields >90% correct classification rate when compared to IR and is able to precisely locate stone components within the structure of the stone with a 15 µm resolution. Due to the little sample pretreatment, low analysis time, good performance of the model, and the automation of the measurements, they become analyst independent; this methodology can be considered to become a routine analysis for clinical laboratories.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ BLS2014 Serial 2563
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Francesca Vidal; Zaida Sarrate
Title Noves perspectives en l estudi de la territorialitat cromosomica de cel·lules germinals masculines: estudis tridimensionals Type Journal
Year 2017 Publication Biologia de la Reproduccio Abbreviated Journal (up) JBR
Volume 15 Issue Pages 73-78
Keywords
Abstract In somatic cells, chromosomes occupy specific nuclear regions called chromosome territories which are involved in the
maintenance and regulation of the genome. Preliminary data in male germ cells also suggest the importance of chromosome
territoriality in cell functionality. Nevertheless, the specific characteristics of testicular tissue (presence of different
cell types with different morphological characteristics, in different stages of development and with different ploidy)
makes difficult to achieve conclusive results. In this study we have developed a methodology to approach the threedimensional
study of all chromosome territories in male germ cells from C57BL/6J mice (Mus musculus). The method
includes the following steps: i) Optimized cell fixation to obtain an optimal preservation of the three-dimensionality cell
morphology, ii) Chromosome identification by FISH (Chromoprobe Multiprobe® OctoChrome™ Murine System; Cytocell)
and confocal microscopy (TCS-SP5, Leica Microsystems), iii) Cell type identification by immunofluorescence
iv) Image analysis using Matlab scripts, v) Numerical data extraction related to chromosome features, chromosome
radial position and chromosome relative position. This methodology allows the unequivocally identification and the
analysis of the chromosome territories of all spermatogenic stages. Results will provide information about the features
that determine chromosomal position, preferred associations between chromosomes, and the relationship between chromosome
positioning and genome regulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-697-3767-5 Medium
Area Expedition Conference
Notes IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017c Serial 2961
Permanent link to this record
 

 
Author Mariella Dimiccoli; Benoît Girard; Alain Berthoz; Daniel Bennequin
Title Striola Magica: a functional explanation of otolith organs Type Journal Article
Year 2013 Publication Journal of Computational Neuroscience Abbreviated Journal (up) JCN
Volume 35 Issue 2 Pages 125-154
Keywords Otolith organs ;Striola; Vestibular pathway
Abstract Otolith end organs of vertebrates sense linear accelerations of the head and gravitation. The hair cells on their epithelia are responsible for transduction. In mammals, the striola, parallel to the line where hair cells reverse their polarization, is a narrow region centered on a curve with curvature and torsion. It has been shown that the striolar region is functionally different from the rest, being involved in a phasic vestibular pathway. We propose a mathematical and computational model that explains the necessity of this amazing geometry for the striola to be able to carry out its function. Our hypothesis, related to the biophysics of the hair cells and to the physiology of their afferent neurons, is that striolar afferents collect information from several type I hair cells to detect the jerk in a large domain of acceleration directions. This predicts a mean number of two calyces for afferent neurons, as measured in rodents. The domain of acceleration directions sensed by our striolar model is compatible with the experimental results obtained on monkeys considering all afferents. Therefore, the main result of our study is that phasic and tonic vestibular afferents cover the same geometrical fields, but at different dynamical and frequency domains.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1573-6873. 2013 ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @DBG2013 Serial 2787
Permanent link to this record
 

 
Author Onur Ferhat; Fernando Vilariño; F. Javier Sanchez
Title A cheap portable eye-tracker solution for common setups. Type Journal Article
Year 2014 Publication Journal of Eye Movement Research Abbreviated Journal (up) JEMR
Volume 7 Issue 3 Pages 1-10
Keywords
Abstract We analyze the feasibility of a cheap eye-tracker where the hardware consists of a single webcam and a Raspberry Pi device. Our aim is to discover the limits of such a system and to see whether it provides an acceptable performance. We base our work on the open source Opengazer (Zielinski, 2013) and we propose several improvements to create a robust, real-time system which can work on a computer with 30Hz sampling rate. After assessing the accuracy of our eye-tracker in elaborated experiments involving 12 subjects under 4 different system setups, we install it on a Raspberry Pi to create a portable stand-alone eye-tracker which achieves 1.42° horizontal accuracy with 3Hz refresh rate for a building cost of 70 Euros.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ;SIAI Approved no
Call Number Admin @ si @ FVS2014 Serial 2435
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville
Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Journal Article
Year 2017 Publication Journal of Healthcare Engineering Abbreviated Journal (up) JHCE
Volume Issue Pages 2040-2295
Keywords Colonoscopy images; Deep Learning; Semantic Segmentation
Abstract Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no
Call Number VBS2017b Serial 2940
Permanent link to this record
 

 
Author Arnau Ramisa; Alex Goldhoorn; David Aldavert; Ricardo Toledo; Ramon Lopez de Mantaras
Title Combining Invariant Features and the ALV Homing Method for Autonomous Robot Navigation Based on Panoramas Type Journal Article
Year 2011 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal (up) JIRC
Volume 64 Issue 3-4 Pages 625-649
Keywords
Abstract Biologically inspired homing methods, such as the Average Landmark Vector, are an interesting solution for local navigation due to its simplicity. However, usually they require a modification of the environment by placing artificial landmarks in order to work reliably. In this paper we combine the Average Landmark Vector with invariant feature points automatically detected in panoramic images to overcome this limitation. The proposed approach has been evaluated first in simulation and, as promising results are found, also in two data sets of panoramas from real world environments.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-0296 ISBN Medium
Area Expedition Conference
Notes RV;ADAS Approved no
Call Number Admin @ si @ RGA2011 Serial 1728
Permanent link to this record
 

 
Author Arnau Ramisa; David Aldavert; Shrihari Vasudevan; Ricardo Toledo; Ramon Lopez de Mantaras
Title Evaluation of Three Vision Based Object Perception Methods for a Mobile Robot Type Journal Article
Year 2012 Publication Journal of Intelligent and Robotic Systems Abbreviated Journal (up) JIRC
Volume 68 Issue 2 Pages 185-208
Keywords
Abstract This paper addresses visual object perception applied to mobile robotics. Being able to perceive household objects in unstructured environments is a key capability in order to make robots suitable to perform complex tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera with tight time constraints. The paper brings to attention some of the issues with applying three state of the art object recognition and detection methods in a mobile robotics scenario, and proposes methods to deal with windowing/segmentation. Thus, this work aims at evaluating the state-of-the-art in object perception in an attempt to develop a lightweight solution for mobile robotics use/research in typical indoor settings.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-0296 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RAV2012 Serial 2150
Permanent link to this record
 

 
Author Daniela Rato; Miguel Oliveira; Vitor Santos; Manuel Gomes; Angel Sappa
Title A sensor-to-pattern calibration framework for multi-modal industrial collaborative cells Type Journal Article
Year 2022 Publication Journal of Manufacturing Systems Abbreviated Journal (up) JMANUFSYST
Volume 64 Issue Pages 497-507
Keywords Calibration; Collaborative cell; Multi-modal; Multi-sensor
Abstract Collaborative robotic industrial cells are workspaces where robots collaborate with human operators. In this context, safety is paramount, and for that a complete perception of the space where the collaborative robot is inserted is necessary. To ensure this, collaborative cells are equipped with a large set of sensors of multiple modalities, covering the entire work volume. However, the fusion of information from all these sensors requires an accurate extrinsic calibration. The calibration of such complex systems is challenging, due to the number of sensors and modalities, and also due to the small overlapping fields of view between the sensors, which are positioned to capture different viewpoints of the cell. This paper proposes a sensor to pattern methodology that can calibrate a complex system such as a collaborative cell in a single optimization procedure. Our methodology can tackle RGB and Depth cameras, as well as LiDARs. Results show that our methodology is able to accurately calibrate a collaborative cell containing three RGB cameras, a depth camera and three 3D LiDARs.
Address
Corporate Author Thesis
Publisher Science Direct Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; MACO Approved no
Call Number Admin @ si @ ROS2022 Serial 3750
Permanent link to this record