|   | 
Details
   web
Records Links
Author Danna Xue; Javier Vazquez; Luis Herranz; Yang Zhang; Michael S Brown edit  url
openurl 
Title Integrating High-Level Features for Consistent Palette-based Multi-image Recoloring Type Journal Article
Year 2023 Publication Computer Graphics Forum Abbreviated Journal (up) CGF  
Volume Issue Pages  
Keywords  
Abstract Achieving visually consistent colors across multiple images is important when images are used in photo albums, websites, and brochures. Unfortunately, only a handful of methods address multi-image color consistency compared to one-to-one color transfer techniques. Furthermore, existing methods do not incorporate high-level features that can assist graphic designers in their work. To address these limitations, we introduce a framework that builds upon a previous palette-based color consistency method and incorporates three high-level features: white balance, saliency, and color naming. We show how these features overcome the limitations of the prior multi-consistency workflow and showcase the user-friendly nature of our framework.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; MACO Approved no  
Call Number Admin @ si @ XVH2023 Serial 3883  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal (up) CVIU  
Volume 116 Issue I Pages 54-67  
Keywords  
Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1077-3142 ISBN Medium  
Area Expedition Conference  
Notes CAT;CIC Approved no  
Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Dimosthenis Karatzas; Sophie Wuerger edit   pdf
url  doi
openurl 
Title Limitations of visual gamma corrections in LCD displays Type Journal Article
Year 2014 Publication Displays Abbreviated Journal (up) Dis  
Volume 35 Issue 5 Pages 227–239  
Keywords Display calibration; Psychophysics; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
Abstract A method for estimating the non-linear gamma transfer function of liquid–crystal displays (LCDs) without the need of a photometric measurement device was described by Xiao et al. (2011) [1]. It relies on observer’s judgments of visual luminance by presenting eight half-tone patterns with luminances from 1/9 to 8/9 of the maximum value of each colour channel. These half-tone patterns were distributed over the screen both over the vertical and horizontal viewing axes. We conducted a series of photometric and psychophysical measurements (consisting in the simultaneous presentation of half-tone patterns in each trial) to evaluate whether the angular dependency of the light generated by three different LCD technologies would bias the results of these gamma transfer function estimations. Our results show that there are significant differences between the gamma transfer functions measured and produced by observers at different viewing angles. We suggest appropriate modifications to the Xiao et al. paradigm to counterbalance these artefacts which also have the advantage of shortening the amount of time spent in collecting the psychophysical measurements.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; DAG; 600.052; 600.077; 600.074 Approved no  
Call Number Admin @ si @ PRK2014 Serial 2511  
Permanent link to this record
 

 
Author Maria Vanrell; Felipe Lumbreras; A. Pujol; Ramon Baldrich; Josep Llados; Juan J. Villanueva edit  openurl
Title Colour Normalisation Based on Background Information. Type Miscellaneous
Year 2001 Publication Proceeding ICIP 2001, IEEE International Conference on Image Processing Abbreviated Journal (up) ICIP 2001  
Volume Issue 1 Pages 874–877  
Keywords  
Abstract  
Address Grecia.  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes ADAS;DAG;CIC Approved no  
Call Number ADAS @ adas @ VLP2001 Serial 167  
Permanent link to this record
 

 
Author Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez edit   pdf
url  doi
openurl 
Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type Journal Article
Year 2012 Publication International Journal of Computer Vision Abbreviated Journal (up) IJCV  
Volume 96 Issue 1 Pages 83-102  
Keywords  
Abstract The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0920-5691 ISBN Medium  
Area Expedition Conference  
Notes ISE;CIC;ADAS Approved no  
Call Number Admin @ si @ BGW2012 Serial 1718  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit   pdf
url  doi
openurl 
Title Modulating Shape Features by Color Attention for Object Recognition Type Journal Article
Year 2012 Publication International Journal of Computer Vision Abbreviated Journal (up) IJCV  
Volume 98 Issue 1 Pages 49-64  
Keywords  
Abstract Bag-of-words based image representation is a successful approach for object recognition. Generally, the subsequent stages of the process: feature detection,feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, it was found that the combination of different image cues, such as shape and color, often obtains below expected results. This paper presents a novel method for recognizing object categories when using ultiple cues by separately processing the shape and color cues and combining them by modulating the shape features by category specific color attention. Color is used to compute bottom up and top-down attention maps. Subsequently, these color attention maps are used to modulate the weights of the shape features. In regions with higher attention shape features are given more weight than in regions with low attention. We compare our approach with existing methods that combine color and shape cues on five data sets containing varied importance of both cues, namely, Soccer (color predominance), Flower (color and hape parity), PASCAL VOC 2007 and 2009 (shape predominance) and Caltech-101 (color co-interference). The experiments clearly demonstrate that in all five data sets our proposed framework significantly outperforms existing methods for combining color and shape information.  
Address  
Corporate Author Thesis  
Publisher Springer Netherlands Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0920-5691 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ KWV2012 Serial 1864  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Antonio Lopez; Michael Felsberg edit   pdf
doi  openurl
Title Coloring Action Recognition in Still Images Type Journal Article
Year 2013 Publication International Journal of Computer Vision Abbreviated Journal (up) IJCV  
Volume 105 Issue 3 Pages 205-221  
Keywords  
Abstract In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.  
Address  
Corporate Author Thesis  
Publisher Springer US Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0920-5691 ISBN Medium  
Area Expedition Conference  
Notes CIC; ADAS; 600.057; 600.048 Approved no  
Call Number Admin @ si @ KRW2013 Serial 2285  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez; Xavier Otazu; Horst Bunke edit  doi
openurl 
Title A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores Type Journal Article
Year 2010 Publication International Journal on Document Analysis and Recognition Abbreviated Journal (up) IJDAR  
Volume 13 Issue 4 Pages 243-259  
Keywords  
Abstract The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.  
Address  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1433-2833 ISBN Medium  
Area Expedition Conference  
Notes DAG; CAT;CIC Approved no  
Call Number FLS2010b Serial 1319  
Permanent link to this record
 

 
Author Eduard Vazquez; Theo Gevers; M. Lucassen; Joost Van de Weijer; Ramon Baldrich edit  doi
openurl 
Title Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception Type Journal Article
Year 2010 Publication Journal of the Optical Society of America A Abbreviated Journal (up) JOSA A  
Volume 27 Issue 3 Pages 613–621  
Keywords  
Abstract In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes ISE;CIC Approved no  
Call Number CAT @ cat @ VGL2010 Serial 1275  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal (up) JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez edit  url
openurl 
Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal (up) JOSA A  
Volume 34 Issue 5 Pages 827-837  
Keywords  
Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.087 Approved no  
Call Number Admin @ si @ RVB2017 Serial 2892  
Permanent link to this record
 

 
Author Hassan Ahmed Sial; Ramon Baldrich; Maria Vanrell edit   pdf
url  openurl
Title Deep intrinsic decomposition trained on surreal scenes yet with realistic light effects Type Journal Article
Year 2020 Publication Journal of the Optical Society of America A Abbreviated Journal (up) JOSA A  
Volume 37 Issue 1 Pages 1-15  
Keywords  
Abstract Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.140; 600.12; 600.118 Approved no  
Call Number Admin @ si @ SBV2019 Serial 3311  
Permanent link to this record
 

 
Author Trevor Canham; Javier Vazquez; Elise Mathieu; Marcelo Bertalmío edit   pdf
url  doi
openurl 
Title Matching visual induction effects on screens of different size Type Journal Article
Year 2021 Publication Journal of Vision Abbreviated Journal (up) JOV  
Volume 21 Issue 6(10) Pages 1-22  
Keywords  
Abstract In the film industry, the same movie is expected to be watched on displays of vastly different sizes, from cinema screens to mobile phones. But visual induction, the perceptual phenomenon by which the appearance of a scene region is affected by its surroundings, will be different for the same image shown on two displays of different dimensions. This phenomenon presents a practical challenge for the preservation of the artistic intentions of filmmakers, because it can lead to shifts in image appearance between viewing destinations. In this work, we show that a neural field model based on the efficient representation principle is able to predict induction effects and how, by regularizing its associated energy functional, the model is still able to represent induction but is now invertible. From this finding, we propose a method to preprocess an image in a screen–size dependent way so that its perception, in terms of visual induction, may remain constant across displays of different size. The potential of the method is demonstrated through psychophysical experiments on synthetic images and qualitative examples on natural images.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ CVM2021 Serial 3595  
Permanent link to this record
 

 
Author Jordi Roca; C. Alejandro Parraga; Maria Vanrell edit   pdf
doi  openurl
Title Chromatic settings and the structural color constancy index Type Journal Article
Year 2013 Publication Journal of Vision Abbreviated Journal (up) JV  
Volume 13 Issue 4-3 Pages 1-26  
Keywords  
Abstract Color constancy is usually measured by achromatic setting, asymmetric matching, or color naming paradigms, whose results are interpreted in terms of indexes and models that arguably do not capture the full complexity of the phenomenon. Here we propose a new paradigm, chromatic setting, which allows a more comprehensive characterization of color constancy through the measurement of multiple points in color space under immersive adaptation. We demonstrated its feasibility by assessing the consistency of subjects' responses over time. The paradigm was applied to two-dimensional (2-D) Mondrian stimuli under three different illuminants, and the results were used to fit a set of linear color constancy models. The use of multiple colors improved the precision of more complex linear models compared to the popular diagonal model computed from gray. Our results show that a diagonal plus translation matrix that models mechanisms other than cone gain might be best suited to explain the phenomenon. Additionally, we calculated a number of color constancy indices for several points in color space, and our results suggest that interrelations among colors are not as uniform as previously believed. To account for this variability, we developed a new structural color constancy index that takes into account the magnitude and orientation of the chromatic shift in addition to the interrelations among colors and memory effects.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC; 600.052; 600.051; 605.203 Approved no  
Call Number Admin @ si @ RPV2013 Serial 2288  
Permanent link to this record
 

 
Author Jaykishan Patel; Alban Flachot; Javier Vazquez; David H. Brainard; Thomas S. A. Wallis; Marcus A. Brubaker; Richard F. Murray edit  url
openurl 
Title A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions Type Journal Article
Year 2023 Publication Journal of Vision Abbreviated Journal (up) JV  
Volume 23 Issue 9 Pages 4817-4817  
Keywords  
Abstract A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes MACO; CIC Approved no  
Call Number Admin @ si @ PFV2023 Serial 3890  
Permanent link to this record
 

 
Author Olivier Penacchio edit   pdf
url  doi
openurl 
Title Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane Type Journal Article
Year 2011 Publication Mathematische Nachrichten Abbreviated Journal (up) MN  
Volume 284 Issue 4 Pages 526-542  
Keywords Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25  
Abstract We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
Address  
Corporate Author Thesis  
Publisher WILEY-VCH Verlag Place of Publication Editor R. Mennicken  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 1522-2616 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Pen2011 Serial 1721  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Shida Beigpour; Joost Van de Weijer; Michael Felsberg edit  doi
openurl 
Title Painting-91: A Large Scale Database for Computational Painting Categorization Type Journal Article
Year 2014 Publication Machine Vision and Applications Abbreviated Journal (up) MVAP  
Volume 25 Issue 6 Pages 1385-1397  
Keywords  
Abstract Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.  
Address  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN 0932-8092 ISBN Medium  
Area Expedition Conference  
Notes CIC; LAMP; 600.074; 600.079 Approved no  
Call Number Admin @ si @ KBW2014 Serial 2510  
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell edit  openurl
Title Ordinal pairwise method for natural images comparison Type Journal Article
Year 2009 Publication Perception Abbreviated Journal (up) PER  
Volume 38 Issue Pages 180  
Keywords  
Abstract 38(Suppl.)ECVP Abstract Supplement
We developed a new psychophysical method to compare different colour appearance models when applied to natural scenes. The method was as follows: two images (processed by different algorithms) were displayed on a CRT monitor and observers were asked to select the most natural of them. The original images were gathered by means of a calibrated trichromatic digital camera and presented one on top of the other on a calibrated screen. The selection was made by pressing on a 6-button IR box, which allowed observers to consider not only the most natural but to rate their selection. The rating system allowed observers to register how much more natural was their chosen image (eg, much more, definitely more, slightly more), which gave us valuable extra information on the selection process. The results were analysed considering both the selection as a binary choice (using Thurstone's law of comparative judgement) and using Bradley-Terry method for ordinal comparison. Our results show a significant difference in the rating scales obtained. Although this method has been used in colour constancy algorithm comparisons, its uses are much wider, eg to compare algorithms of image compression, rendering, recolouring, etc.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number CAT @ cat @ VPV2009b Serial 1191  
Permanent link to this record