Javier Vazquez, Maria Vanrell, Ramon Baldrich, & Francesc Tous. (2012). Color Constancy by Category Correlation. TIP - IEEE Transactions on Image Processing, 21(4), 1997–2007.
Abstract: Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
|
Shida Beigpour, Christian Riess, Joost Van de Weijer, & Elli Angelopoulou. (2014). Multi-Illuminant Estimation with Conditional Random Fields. TIP - IEEE Transactions on Image Processing, 23(1), 83–95.
Abstract: Most existing color constancy algorithms assume uniform illumination. However, in real-world scenes, this is not often the case. Thus, we propose a novel framework for estimating the colors of multiple illuminants and their spatial distribution in the scene. We formulate this problem as an energy minimization task within a conditional random field over a set of local illuminant estimates. In order to quantitatively evaluate the proposed method, we created a novel data set of two-dominant-illuminant images comprised of laboratory, indoor, and outdoor scenes. Unlike prior work, our database includes accurate pixel-wise ground truth illuminant information. The performance of our method is evaluated on multiple data sets. Experimental results show that our framework clearly outperforms single illuminant estimators as well as a recently proposed multi-illuminant estimation approach.
Keywords: color constancy; CRF; multi-illuminant
|
Fahad Shahbaz Khan, Joost Van de Weijer, Muhammad Anwer Rao, Michael Felsberg, & Carlo Gatta. (2014). Semantic Pyramids for Gender and Action Recognition. TIP - IEEE Transactions on Image Processing, 23(8), 3633–3645.
Abstract: Person description is a challenging problem in computer vision. We investigated two major aspects of person description: 1) gender and 2) action recognition in still images. Most state-of-the-art approaches for gender and action recognition rely on the description of a single body part, such as face or full-body. However, relying on a single body part is suboptimal due to significant variations in scale, viewpoint, and pose in real-world images. This paper proposes a semantic pyramid approach for pose normalization. Our approach is fully automatic and based on combining information from full-body, upper-body, and face regions for gender and action recognition in still images. The proposed approach does not require any annotations for upper-body and face of a person. Instead, we rely on pretrained state-of-the-art upper-body and face detectors to automatically extract semantic information of a person. Given multiple bounding boxes from each body part detector, we then propose a simple method to select the best candidate bounding box, which is used for feature extraction. Finally, the extracted features from the full-body, upper-body, and face regions are combined into a single representation for classification. To validate the proposed approach for gender recognition, experiments are performed on three large data sets namely: 1) human attribute; 2) head-shoulder; and 3) proxemics. For action recognition, we perform experiments on four data sets most used for benchmarking action recognition in still images: 1) Sports; 2) Willow; 3) PASCAL VOC 2010; and 4) Stanford-40. Our experiments clearly demonstrate that the proposed approach, despite its simplicity, outperforms state-of-the-art methods for gender and action recognition.
|
Mikhail Mozerov, & Joost Van de Weijer. (2015). Accurate stereo matching by two step global optimization. TIP - IEEE Transactions on Image Processing, 24(3), 1153–1163.
Abstract: In stereo matching cost filtering methods and energy minimization algorithms are considered as two different techniques. Due to their global extend energy minimization methods obtain good stereo matching results. However, they tend to fail in occluded regions, in which cost filtering approaches obtain better results. In this paper we intend to combine both approaches with the aim to improve overall stereo matching results. We show that a global optimization with a fully connected model can be solved by cost fil tering methods. Based on this observation we propose to perform stereo matching as a two-step energy minimization algorithm. We consider two MRF models: a fully connected model defined on the complete set of pixels in an image and a conventional locally connected model. We solve the energy minimization problem for the fully connected model, after which the marginal function of the solution is used as the unary potential in the locally connected MRF model. Experiments on the Middlebury stereo datasets show that the proposed method achieves state-of-the-arts results.
|
Fahad Shahbaz Khan, Jiaolong Xu, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, & Antonio Lopez. (2015). Recognizing Actions through Action-specific Person Detection. TIP - IEEE Transactions on Image Processing, 24(11), 4422–4432.
Abstract: Action recognition in still images is a challenging problem in computer vision. To facilitate comparative evaluation independently of person detection, the standard evaluation protocol for action recognition uses an oracle person detector to obtain perfect bounding box information at both training and test time. The assumption is that, in practice, a general person detector will provide candidate bounding boxes for action recognition. In this paper, we argue that this paradigm is suboptimal and that action class labels should already be considered during the detection stage. Motivated by the observation that body pose is strongly conditioned on action class, we show that: 1) the existing state-of-the-art generic person detectors are not adequate for proposing candidate bounding boxes for action classification; 2) due to limited training examples, the direct training of action-specific person detectors is also inadequate; and 3) using only a small number of labeled action examples, the transfer learning is able to adapt an existing detector to propose higher quality bounding boxes for subsequent action classification. To the best of our knowledge, we are the first to investigate transfer learning for the task of action-specific person detection in still images. We perform extensive experiments on two benchmark data sets: 1) Stanford-40 and 2) PASCAL VOC 2012. For the action detection task (i.e., both person localization and classification of the action performed), our approach outperforms methods based on general person detection by 5.7% mean average precision (MAP) on Stanford-40 and 2.1% MAP on PASCAL VOC 2012. Our approach also significantly outperforms the state of the art with a MAP of 45.4% on Stanford-40 and 31.4% on PASCAL VOC 2012. We also evaluate our action detection approach for the task of action classification (i.e., recognizing actions without localizing them). For this task, our approach, without using any ground-truth person localization at test tim- , outperforms on both data sets state-of-the-art methods, which do use person locations.
|
Mikhail Mozerov, & Joost Van de Weijer. (2015). Global Color Sparseness and a Local Statistics Prior for Fast Bilateral Filtering. TIP - IEEE Transactions on Image Processing, 24(12), 5842–5853.
Abstract: The property of smoothing while preserving edges makes the bilateral filter a very popular image processing tool. However, its non-linear nature results in a computationally costly operation. Various works propose fast approximations to the bilateral filter. However, the majority does not generalize to vector input as is the case with color images. We propose a fast approximation to the bilateral filter for color images. The filter is based on two ideas. First, the number of colors, which occur in a single natural image, is limited. We exploit this color sparseness to rewrite the initial non-linear bilateral filter as a number of linear filter operations. Second, we impose a statistical prior to the image values that are locally present within the filter window. We show that this statistical prior leads to a closed-form solution of the bilateral filter. Finally, we combine both ideas into a single fast and accurate bilateral filter for color images. Experimental results show that our bilateral filter based on the local prior yields an extremely fast bilateral filter approximation, but with limited accuracy, which has potential application in real-time video filtering. Our bilateral filter, which combines color sparseness and local statistics, yields a fast and accurate bilateral filter approximation and obtains the state-of-the-art results.
|
Mikhail Mozerov, & Joost Van de Weijer. (2017). Improved Recursive Geodesic Distance Computation for Edge Preserving Filter. TIP - IEEE Transactions on Image Processing, 26(8), 3696–3706.
Abstract: All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Keywords: Geodesic distance filter; color image filtering; image enhancement
|
Mikhail Mozerov, & Joost Van de Weijer. (2019). One-view occlusion detection for stereo matching with a fully connected CRF model. TIP - IEEE Transactions on Image Processing, 28(6), 2936–2947.
Abstract: In this paper, we extend the standard belief propagation (BP) sequential technique proposed in the tree-reweighted sequential method [15] to the fully connected CRF models with the geodesic distance affinity. The proposed method has been applied to the stereo matching problem. Also a new approach to the BP marginal solution is proposed that we call one-view occlusion detection (OVOD). In contrast to the standard winner takes all (WTA) estimation, the proposed OVOD solution allows to find occluded regions in the disparity map and simultaneously improve the matching result. As a result we can perform only
one energy minimization process and avoid the cost calculation for the second view and the left-right check procedure. We show that the OVOD approach considerably improves results for cost augmentation and energy minimization techniques in comparison with the standard one-view affinity space implementation. We apply our method to the Middlebury data set and reach state-ofthe-art especially for median, average and mean squared error metrics.
Keywords: Stereo matching; energy minimization; fully connected MRF model; geodesic distance filter
|
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Synthetic Data Generation for End-to-End Thermal Infrared Tracking. TIP - IEEE Transactions on Image Processing, 28(4), 1837–1850.
Abstract: The usage of both off-the-shelf and end-to-end trained deep networks have significantly improved the performance of visual tracking on RGB videos. However, the lack of large labeled datasets hampers the usage of convolutional neural networks for tracking in thermal infrared (TIR) images. Therefore, most state-of-the-art methods on tracking for TIR data are still based on handcrafted features. To address this problem, we propose to use image-to-image translation models. These models allow us to translate the abundantly available labeled RGB data to synthetic TIR data. We explore both the usage of paired and unpaired image translation models for this purpose. These methods provide us with a large labeled dataset of synthetic TIR sequences, on which we can train end-to-end optimal features for tracking. To the best of our knowledge, we are the first to train end-to-end features for TIR tracking. We perform extensive experiments on the VOT-TIR2017 dataset. We show that a network trained on a large dataset of synthetic TIR data obtains better performance than one trained on the available real TIR data. Combining both data sources leads to further improvement. In addition, when we combine the network with motion features, we outperform the state of the art with a relative gain of over 10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR trackers.
|
Sudeep Katakol, Basem Elbarashy, Luis Herranz, Joost Van de Weijer, & Antonio Lopez. (2021). Distributed Learning and Inference with Compressed Images. TIP - IEEE Transactions on Image Processing, 30, 3069–3083.
Abstract: Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.
|
Yasuko Sugito, Javier Vazquez, Trevor Canham, & Marcelo Bertalmio. (2022). Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics. TIP - IEEE Transactions on Image Processing, 31, 5163–5177.
Abstract: In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.
Keywords: Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements
|
David Geronimo, Joan Serrat, Antonio Lopez, & Ramon Baldrich. (2013). Traffic sign recognition for computer vision project-based learning. T-EDUC - IEEE Transactions on Education, 56(3), 364–371.
Abstract: This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.
Keywords: traffic signs
|
Mikhail Mozerov, Fei Yang, & Joost Van de Weijer. (2019). Sparse Data Interpolation Using the Geodesic Distance Affinity Space. SPL - IEEE Signal Processing Letters, 26(6), 943–947.
Abstract: In this letter, we adapt the geodesic distance-based recursive filter to the sparse data interpolation problem. The proposed technique is general and can be easily applied to any kind of sparse data. We demonstrate its superiority over other interpolation techniques in three experiments for qualitative and quantitative evaluation. In addition, we compare our method with the popular interpolation algorithm presented in the paper on EpicFlow optical flow, which is intuitively motivated by a similar geodesic distance principle. The comparison shows that our algorithm is more accurate and considerably faster than the EpicFlow interpolation technique.
|
Fei Yang, Luis Herranz, Joost Van de Weijer, Jose Antonio Iglesias, Antonio Lopez, & Mikhail Mozerov. (2020). Variable Rate Deep Image Compression with Modulated Autoencoder. SPL - IEEE Signal Processing Letters, 27, 331–335.
Abstract: Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters.
|
Aymen Azaza, Joost Van de Weijer, Ali Douik, Javad Zolfaghari Bengar, & Marc Masana. (2020). Saliency from High-Level Semantic Image Features. SN - SN Computer Science, 1–12.
Abstract: Top-down semantic information is known to play an important role in assigning saliency. Recently, large strides have been made in improving state-of-the-art semantic image understanding in the fields of object detection and semantic segmentation. Therefore, since these methods have now reached a high-level of maturity, evaluation of the impact of high-level image understanding on saliency estimation is now feasible. We propose several saliency features which are computed from object detection and semantic segmentation results. We combine these features with a standard baseline method for saliency detection to evaluate their importance. Experiments demonstrate that the proposed features derived from object detection and semantic segmentation improve saliency estimation significantly. Moreover, they show that our method obtains state-of-the-art results on (FT, ImgSal, and SOD datasets) and obtains competitive results on four other datasets (ECSSD, PASCAL-S, MSRA-B, and HKU-IS).
|
Yasuko Sugito, Trevor Canham, Javier Vazquez, & Marcelo Bertalmio. (2021). A Study of Objective Quality Metrics for HLG-Based HDR/WCG Image Coding. SMPTE - SMPTE Motion Imaging Journal, 53–65.
Abstract: In this work, we study the suitability of high dynamic range, wide color gamut (HDR/WCG) objective quality metrics to assess the perceived deterioration of compressed images encoded using the hybrid log-gamma (HLG) method, which is the standard for HDR television. Several image quality metrics have been developed to deal specifically with HDR content, although in previous work we showed that the best results (i.e., better matches to the opinion of human expert observers) are obtained by an HDR metric that consists simply in applying a given standard dynamic range metric, called visual information fidelity (VIF), directly to HLG-encoded images. However, all these HDR metrics ignore the chroma components for their calculations, that is, they consider only the luminance channel. For this reason, in the current work, we conduct subjective evaluation experiments in a professional setting using compressed HDR/WCG images encoded with HLG and analyze the ability of the best HDR metric to detect perceivable distortions in the chroma components, as well as the suitability of popular color metrics (including ΔITPR , which supports parameters for HLG) to correlate with the opinion scores. Our first contribution is to show that there is a need to consider the chroma components in HDR metrics, as there are color distortions that subjects perceive but that the best HDR metric fails to detect. Our second contribution is the surprising result that VIF, which utilizes only the luminance channel, correlates much better with the subjective evaluation scores than the metrics investigated that do consider the color components.
|
O. Fors, J. Nuñez, Xavier Otazu, A. Prades, & Robert D. Cardinal. (2010). Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques. SENS - Sensors, 10(3), 1743–1752.
Abstract: Abstract: In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.
Keywords: image processing; image deconvolution; faint stars; space debris; wavelet transform
|
Gabriel Villalonga, Joost Van de Weijer, & Antonio Lopez. (2020). Recognizing new classes with synthetic data in the loop: application to traffic sign recognition. SENS - Sensors, 20(3), 583.
Abstract: On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.
|