Ricard Balague. (2014). Exploring the combination of color cues for intrinsic image decomposition (Vol. 178). Master's thesis, , .
Abstract: Intrinsic image decomposition is a challenging problem that consists in separating an image into its physical characteristics: reflectance and shading. This problem can be solved in different ways, but most methods have combined information from several visual cues. In this work we describe an extension of an existing method proposed by Serra et al. which considers two color descriptors and combines them by means of a Markov Random Field. We analyze in depth the weak points of the method and we explore more possibilities to use in both descriptors. The proposed extension depends on the combination of the cues considered to overcome some of the limitations of the original method. Our approach is tested on the MIT dataset and Beigpour et al. dataset, which contain images of real objects acquired under controlled conditions and synthetic images respectively, with their corresponding ground truth.
|
Joost Van de Weijer, & Fahad Shahbaz Khan. (2015). An Overview of Color Name Applications in Computer Vision. In Computational Color Imaging Workshop.
Abstract: In this article we provide an overview of color name applications in computer vision. Color names are linguistic labels which humans use to communicate color. Computational color naming learns a mapping from pixels values to color names. In recent years color names have been applied to a wide variety of computer vision applications, including image classification, object recognition, texture classification, visual tracking and action recognition. Here we provide an overview of these results which show that in general color names outperform photometric invariants as a color representation.
Keywords: color features; color names; object recognition
|
C. Alejandro Parraga. (2015). Perceptual Psychophysics. In G.Cristobal, M.Keil, & L.Perrinet (Eds.), Biologically-Inspired Computer Vision: Fundamentals and Applications.
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). Brightness and colour induction through contextual influences in V1. In Scottish Vision Group 2015 SGV2015 (Vol. 12, pp. 1208–2012).
|
Olivier Penacchio, Xavier Otazu, A. wilkins, & J. Harris. (2015). Uncomfortable images prevent lateral interactions in the cortex from providing a sparse code. In European Conference on Visual Perception ECVP2015.
|
Xavier Otazu, Olivier Penacchio, & Xim Cerda-Company. (2015). An excitatory-inhibitory firing rate model accounts for brightness induction, colour induction and visual discomfort. In Barcelona Computational, Cognitive and Systems Neuroscience.
|
Adria Ruiz, Joost Van de Weijer, & Xavier Binefa. (2015). From emotions to action units with hidden and semi-hidden-task learning. In 16th IEEE International Conference on Computer Vision (pp. 3703–3711).
Abstract: Limited annotated training data is a challenging problem in Action Unit recognition. In this paper, we investigate how the use of large databases labelled according to the 6 universal facial expressions can increase the generalization ability of Action Unit classifiers. For this purpose, we propose a novel learning framework: Hidden-Task Learning. HTL aims to learn a set of Hidden-Tasks (Action Units)for which samples are not available but, in contrast, training data is easier to obtain from a set of related VisibleTasks (Facial Expressions). To that end, HTL is able to exploit prior knowledge about the relation between Hidden and Visible-Tasks. In our case, we base this prior knowledge on empirical psychological studies providing statistical correlations between Action Units and universal facial expressions. Additionally, we extend HTL to Semi-Hidden Task Learning (SHTL) assuming that Action Unit training samples are also provided. Performing exhaustive experiments over four different datasets, we show that HTL and SHTL improve the generalization ability of AU classifiers by training them with additional facial expression data. Additionally, we show that SHTL achieves competitive performance compared with state-of-the-art Transductive Learning approaches which face the problem of limited training data by using unlabelled test samples during training.
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Michael Felsberg, & J.Laaksonen. (2015). Deep semantic pyramids for human attributes and action recognition. In Image Analysis, Proceedings of 19th Scandinavian Conference , SCIA 2015 (Vol. 9127, pp. 341–353). Springer International Publishing.
Abstract: Describing persons and their actions is a challenging problem due to variations in pose, scale and viewpoint in real-world images. Recently, semantic pyramids approach [1] for pose normalization has shown to provide excellent results for gender and action recognition. The performance of semantic pyramids approach relies on robust image description and is therefore limited due to the use of shallow local features. In the context of object recognition [2] and object detection [3], convolutional neural networks (CNNs) or deep features have shown to improve the performance over the conventional shallow features.
We propose deep semantic pyramids for human attributes and action recognition. The method works by constructing spatial pyramids based on CNNs of different part locations. These pyramids are then combined to obtain a single semantic representation. We validate our approach on the Berkeley and 27 Human Attributes datasets for attributes classification. For action recognition, we perform experiments on two challenging datasets: Willow and PASCAL VOC 2010. The proposed deep semantic pyramids provide a significant gain of 17.2%, 13.9%, 24.3% and 22.6% compared to the standard shallow semantic pyramids on Berkeley, 27 Human Attributes, Willow and PASCAL VOC 2010 datasets respectively. Our results also show that deep semantic pyramids outperform conventional CNNs based on the full bounding box of the person. Finally, we compare our approach with state-of-the-art methods and show a gain in performance compared to best methods in literature.
Keywords: Action recognition; Human attributes; Semantic pyramids
|
Marc Serra. (2015). Modeling, estimation and evaluation of intrinsic images considering color information (Robert Benavente, & Olivier Penacchio, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Image values are the result of a combination of visual information coming from multiple sources. Recovering information from the multiple factors thatproduced an image seems a hard and ill-posed problem. However, it is important to observe that humans develop the ability to interpret images and recognize and isolate specific physical properties of the scene.
Images describing a single physical characteristic of an scene are called intrinsic images. These images would benefit most computer vision tasks which are often affected by the multiple complex effects that are usually found in natural images (e.g. cast shadows, specularities, interreflections...).
In this thesis we analyze the problem of intrinsic image estimation from different perspectives, including the theoretical formulation of the problem, the visual cues that can be used to estimate the intrinsic components and the evaluation mechanisms of the problem.
|
Aleksandr Setkov, Fabio Martinez Carillo, Michele Gouiffes, Christian Jacquemin, Maria Vanrell, & Ramon Baldrich. (2015). DAcImPro: A Novel Database of Acquired Image Projections and Its Application to Object Recognition. In Advances in Visual Computing. Proceedings of 11th International Symposium, ISVC 2015 Part II (Vol. 9475, pp. 463–473). LNCS. Springer International Publishing.
Abstract: Projector-camera systems are designed to improve the projection quality by comparing original images with their captured projections, which is usually complicated due to high photometric and geometric variations. Many research works address this problem using their own test data which makes it extremely difficult to compare different proposals. This paper has two main contributions. Firstly, we introduce a new database of acquired image projections (DAcImPro) that, covering photometric and geometric conditions and providing data for ground-truth computation, can serve to evaluate different algorithms in projector-camera systems. Secondly, a new object recognition scenario from acquired projections is presented, which could be of a great interest in such domains, as home video projections and public presentations. We show that the task is more challenging than the classical recognition problem and thus requires additional pre-processing, such as color compensation or projection area selection.
Keywords: Projector-camera systems; Feature descriptors; Object recognition
|
Marc Masana, Joost Van de Weijer, & Andrew Bagdanov. (2016). On-the-fly Network pruning for object detection. In International conference on learning representations.
Abstract: Object detection with deep neural networks is often performed by passing a few
thousand candidate bounding boxes through a deep neural network for each image.
These bounding boxes are highly correlated since they originate from the same
image. In this paper we investigate how to exploit feature occurrence at the image scale to prune the neural network which is subsequently applied to all bounding boxes. We show that removing units which have near-zero activation in the image allows us to significantly reduce the number of parameters in the network. Results on the PASCAL 2007 Object Detection Challenge demonstrate that up to 40% of units in some fully-connected layers can be entirely eliminated with little change in the detection result.
|
Ozan Caglayan, Walid Aransa, Yaxing Wang, Marc Masana, Mercedes Garcıa-Martinez, Fethi Bougares, et al. (2016). Does Multimodality Help Human and Machine for Translation and Image Captioning? In 1st conference on machine translation.
Abstract: This paper presents the systems developed by LIUM and CVC for the WMT16 Multimodal Machine Translation challenge. We explored various comparative methods, namely phrase-based systems and attentional recurrent neural networks models trained using monomodal or multimodal data. We also performed a human evaluation in order to estimate theusefulness of multimodal data for human machine translation and image description generation. Our systems obtained the best results for both tasks according to the automatic evaluation metrics BLEU and METEOR.
|
Esteve Cervantes, Long Long Yu, Andrew Bagdanov, Marc Masana, & Joost Van de Weijer. (2016). Hierarchical Part Detection with Deep Neural Networks. In 23rd IEEE International Conference on Image Processing.
Abstract: Part detection is an important aspect of object recognition. Most approaches apply object proposals to generate hundreds of possible part bounding box candidates which are then evaluated by part classifiers. Recently several methods have investigated directly regressing to a limited set of bounding boxes from deep neural network representation. However, for object parts such methods may be unfeasible due to their relatively small size with respect to the image. We propose a hierarchical method for object and part detection. In a single network we first detect the object and then regress to part location proposals based only on the feature representation inside the object. Experiments show that our hierarchical approach outperforms a network which directly regresses the part locations. We also show that our approach obtains part detection accuracy comparable or better than state-of-the-art on the CUB-200 bird and Fashionista clothing item datasets with only a fraction of the number of part proposals.
Keywords: Object Recognition; Part Detection; Convolutional Neural Networks
|
Muhammad Anwer Rao, Fahad Shahbaz Khan, Joost Van de Weijer, & Jorma Laaksonen. (2016). Combining Holistic and Part-based Deep Representations for Computational Painting Categorization. In 6th International Conference on Multimedia Retrieval.
Abstract: Automatic analysis of visual art, such as paintings, is a challenging inter-disciplinary research problem. Conventional approaches only rely on global scene characteristics by encoding holistic information for computational painting categorization.We argue that such approaches are sub-optimal and that discriminative common visual structures provide complementary information for painting classification. We present an approach that encodes both the global scene layout and discriminative latent common structures for computational painting categorization. The region of interests are automatically extracted, without any manual part labeling, by training class-specific deformable part-based models. Both holistic and region-of-interests are then described using multi-scale dense convolutional features. These features are pooled separately using Fisher vector encoding and concatenated afterwards in a single image representation. Experiments are performed on a challenging dataset with 91 different painters and 13 diverse painting styles. Our approach outperforms the standard method, which only employs the global scene characteristics. Furthermore, our method achieves state-of-the-art results outperforming a recent multi-scale deep features based approach [11] by 6.4% and 3.8% respectively on artist and style classification.
|
Ozan Caglayan, Walid Aransa, Adrien Bardet, Mercedes Garcia-Martinez, Fethi Bougares, Loic Barrault, et al. (2017). LIUM-CVC Submissions for WMT17 Multimodal Translation Task. In 2nd Conference on Machine Translation.
Abstract: This paper describes the monomodal and multimodal Neural Machine Translation systems developed by LIUM and CVC for WMT17 Shared Task on Multimodal Translation. We mainly explored two multimodal architectures where either global visual features or convolutional feature maps are integrated in order to benefit from visual context. Our final systems ranked first for both En-De and En-Fr language pairs according to the automatic evaluation metrics METEOR and BLEU.
|
Jordi Roca. (2012). Constancy and inconstancy in categorical colour perception (Maria Vanrell, & C. Alejandro Parraga, Eds.). Ph.D. thesis, , .
Abstract: To recognise objects is perhaps the most important task an autonomous system, either biological or artificial needs to perform. In the context of human vision, this is partly achieved by recognizing the colour of surfaces despite changes in the wavelength distribution of the illumination, a property called colour constancy. Correct surface colour recognition may be adequately accomplished by colour category matching without the need to match colours precisely, therefore categorical colour constancy is likely to play an important role for object identification to be successful. The main aim of this work is to study the relationship between colour constancy and categorical colour perception. Previous studies of colour constancy have shown the influence of factors such the spatio-chromatic properties of the background, individual observer's performance, semantics, etc. However there is very little systematic study of these influences. To this end, we developed a new approach to colour constancy which includes both individual observers' categorical perception, the categorical structure of the background, and their interrelations resulting in a more comprehensive characterization of the phenomenon. In our study, we first developed a new method to analyse the categorical structure of 3D colour space, which allowed us to characterize individual categorical colour perception as well as quantify inter-individual variations in terms of shape and centroid location of 3D categorical regions. Second, we developed a new colour constancy paradigm, termed chromatic setting, which allows measuring the precise location of nine categorically-relevant points in colour space under immersive illumination. Additionally, we derived from these measurements a new colour constancy index which takes into account the magnitude and orientation of the chromatic shift, memory effects and the interrelations among colours and a model of colour naming tuned to each observer/adaptation state. Our results lead to the following conclusions: (1) There exists large inter-individual variations in the categorical structure of colour space, and thus colour naming ability varies significantly but this is not well predicted by low-level chromatic discrimination ability; (2) Analysis of the average colour naming space suggested the need for an additional three basic colour terms (turquoise, lilac and lime) for optimal colour communication; (3) Chromatic setting improved the precision of more complex linear colour constancy models and suggested that mechanisms other than cone gain might be best suited to explain colour constancy; (4) The categorical structure of colour space is broadly stable under illuminant changes for categorically balanced backgrounds; (5) Categorical inconstancy exists for categorically unbalanced backgrounds thus indicating that categorical information perceived in the initial stages of adaptation may constrain further categorical perception.
|
Ivet Rafegas, & Maria Vanrell. (2016). Color spaces emerging from deep convolutional networks. In 24th Color and Imaging Conference (pp. 225–230).
Abstract: Award for the best interactive session
Defining color spaces that provide a good encoding of spatio-chromatic properties of color surfaces is an open problem in color science [8, 22]. Related to this, in computer vision the fusion of color with local image features has been studied and evaluated [16]. In human vision research, the cells which are selective to specific color hues along the visual pathway are also a focus of attention [7, 14]. In line with these research aims, in this paper we study how color is encoded in a deep Convolutional Neural Network (CNN) that has been trained on more than one million natural images for object recognition. These convolutional nets achieve impressive performance in computer vision, and rival the representations in human brain. In this paper we explore how color is represented in a CNN architecture that can give some intuition about efficient spatio-chromatic representations. In convolutional layers the activation of a neuron is related to a spatial filter, that combines spatio-chromatic representations. We use an inverted version of it to explore the properties. Using a series of unsupervised methods we classify different type of neurons depending on the color axes they define and we propose an index of color-selectivity of a neuron. We estimate the main color axes that emerge from this trained net and we prove that colorselectivity of neurons decreases from early to deeper layers.
|
Ivet Rafegas, & Maria Vanrell. (2016). Colour Visual Coding in trained Deep Neural Networks. In European Conference on Visual Perception.
|