|   | 
Details
   web
Records
Author Kai Wang; Luis Herranz; Joost Van de Weijer
Title Continual learning in cross-modal retrieval Type Conference Article
Year 2021 Publication 2nd CLVISION workshop Abbreviated Journal (up)
Volume Issue Pages 3628-3638
Keywords
Abstract Multimodal representations and continual learning are two areas closely related to human intelligence. The former considers the learning of shared representation spaces where information from different modalities can be compared and integrated (we focus on cross-modal retrieval between language and visual representations). The latter studies how to prevent forgetting a previously learned task when learning a new one. While humans excel in these two aspects, deep neural networks are still quite limited. In this paper, we propose a combination of both problems into a continual cross-modal retrieval setting, where we study how the catastrophic interference caused by new tasks impacts the embedding spaces and their cross-modal alignment required for effective retrieval. We propose a general framework that decouples the training, indexing and querying stages. We also identify and study different factors that may lead to forgetting, and propose tools to alleviate it. We found that the indexing stage pays an important role and that simply avoiding reindexing the database with updated embedding networks can lead to significant gains. We evaluated our methods in two image-text retrieval datasets, obtaining significant gains with respect to the fine tuning baseline.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120; 600.141; 600.147; 601.379 Approved no
Call Number Admin @ si @ WHW2021 Serial 3566
Permanent link to this record
 

 
Author Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni
Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal (up)
Volume Issue Pages 3595-3605
Keywords
Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ LPC2021 Serial 3567
Permanent link to this record
 

 
Author Idoia Ruiz; Lorenzo Porzi; Samuel Rota Bulo; Peter Kontschieder; Joan Serrat
Title Weakly Supervised Multi-Object Tracking and Segmentation Type Conference Article
Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal (up)
Volume Issue Pages 125-133
Keywords
Abstract We introduce the problem of weakly supervised MultiObject Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and multi-object tracking, in which we do not provide any kind of mask annotation.
To address it, we design a novel synergistic training strategy by taking advantage of multi-task learning, i.e. classification and tracking tasks guide the training of the unsupervised instance segmentation. For that purpose, we extract weak foreground localization information, provided by
Grad-CAM heatmaps, to generate a partial ground truth to learn from. Additionally, RGB image level information is employed to refine the mask prediction at the edges of the
objects. We evaluate our method on KITTI MOTS, the most representative benchmark for this task, reducing the performance gap on the MOTSP metric between the fully supervised and weakly supervised approach to just 12% and 12.7 % for cars and pedestrians, respectively.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACVW
Notes ADAS; 600.118; 600.124 Approved no
Call Number Admin @ si @ RPR2021 Serial 3548
Permanent link to this record
 

 
Author Ozge Mercanoglu Sincan; Julio C. S. Jacques Junior; Sergio Escalera; Hacer Yalim Keles
Title ChaLearn LAP Large Scale Signer Independent Isolated Sign Language Recognition Challenge: Design, Results and Future Research Type Conference Article
Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal (up)
Volume Issue Pages 3467-3476
Keywords
Abstract The performances of Sign Language Recognition (SLR) systems have improved considerably in recent years. However, several open challenges still need to be solved to allow SLR to be useful in practice. The research in the field is in its infancy in regards to the robustness of the models to a large diversity of signs and signers, and to fairness of the models to performers from different demographics. This work summarises the ChaLearn LAP Large Scale Signer Independent Isolated SLR Challenge, organised at CVPR 2021 with the goal of overcoming some of the aforementioned challenges. We analyse and discuss the challenge design, top winning solutions and suggestions for future research. The challenge attracted 132 participants in the RGB track and 59 in the RGB+Depth track, receiving more than 1.5K submissions in total. Participants were evaluated using a new large-scale multi-modal Turkish Sign Language (AUTSL) dataset, consisting of 226 sign labels and 36,302 isolated sign video samples performed by 43 different signers. Winning teams achieved more than 96% recognition rate, and their approaches benefited from pose/hand/face estimation, transfer learning, external data, fusion/ensemble of modalities and different strategies to model spatio-temporal information. However, methods still fail to distinguish among very similar signs, in particular those sharing similar hand trajectories.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ MJE2021 Serial 3560
Permanent link to this record
 

 
Author Shiqi Yang; Kai Wang; Luis Herranz; Joost Van de Weijer
Title On Implicit Attribute Localization for Generalized Zero-Shot Learning Type Journal Article
Year 2021 Publication IEEE Signal Processing Letters Abbreviated Journal (up)
Volume 28 Issue Pages 872 - 876
Keywords
Abstract Zero-shot learning (ZSL) aims to discriminate images from unseen classes by exploiting relations to seen classes via their attribute-based descriptions. Since attributes are often related to specific parts of objects, many recent works focus on discovering discriminative regions. However, these methods usually require additional complex part detection modules or attention mechanisms. In this paper, 1) we show that common ZSL backbones (without explicit attention nor part detection) can implicitly localize attributes, yet this property is not exploited. 2) Exploiting it, we then propose SELAR, a simple method that further encourages attribute localization, surprisingly achieving very competitive generalized ZSL (GZSL) performance when compared with more complex state-of-the-art methods. Our findings provide useful insight for designing future GZSL methods, and SELAR provides an easy to implement yet strong baseline.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.120 Approved no
Call Number YWH2021 Serial 3563
Permanent link to this record
 

 
Author Domicele Jonauskaite; Lucia Camenzind; C. Alejandro Parraga; Cecile N Diouf; Mathieu Mercapide Ducommun; Lauriane Müller; Melanie Norberg; Christine Mohr
Title Colour-emotion associations in individuals with red-green colour blindness Type Journal Article
Year 2021 Publication PeerJ Abbreviated Journal (up)
Volume 9 Issue Pages e11180
Keywords Affect; Chromotherapy; Colour cognition; Colour vision deficiency; Cross-modal correspondences; Daltonism; Deuteranopia; Dichromatic; Emotion; Protanopia.
Abstract Colours and emotions are associated in languages and traditions. Some of us may convey sadness by saying feeling blue or by wearing black clothes at funerals. The first example is a conceptual experience of colour and the second example is an immediate perceptual experience of colour. To investigate whether one or the other type of experience more strongly drives colour-emotion associations, we tested 64 congenitally red-green colour-blind men and 66 non-colour-blind men. All participants associated 12 colours, presented as terms or patches, with 20 emotion concepts, and rated intensities of the associated emotions. We found that colour-blind and non-colour-blind men associated similar emotions with colours, irrespective of whether colours were conveyed via terms (r = .82) or patches (r = .80). The colour-emotion associations and the emotion intensities were not modulated by participants' severity of colour blindness. Hinting at some additional, although minor, role of actual colour perception, the consistencies in associations for colour terms and patches were higher in non-colour-blind than colour-blind men. Together, these results suggest that colour-emotion associations in adults do not require immediate perceptual colour experiences, as conceptual experiences are sufficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC; LAMP; 600.120; 600.128 Approved no
Call Number Admin @ si @ JCP2021 Serial 3564
Permanent link to this record
 

 
Author Marc Masana; Tinne Tuytelaars; Joost Van de Weijer
Title Ternary Feature Masks: zero-forgetting for task-incremental learning Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal (up)
Volume Issue Pages 3565-3574
Keywords
Abstract We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ MTW2021 Serial 3565
Permanent link to this record
 

 
Author Sudeep Katakol; Luis Herranz; Fei Yang; Marta Mrak
Title DANICE: Domain adaptation without forgetting in neural image compression Type Conference Article
Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal (up)
Volume Issue Pages 1921-1925
Keywords
Abstract Neural image compression (NIC) is a new coding paradigm where coding capabilities are captured by deep models learned from data. This data-driven nature enables new potential functionalities. In this paper, we study the adaptability of codecs to custom domains of interest. We show that NIC codecs are transferable and that they can be adapted with relatively few target domain images. However, naive adaptation interferes with the solution optimized for the original source domain, resulting in forgetting the original coding capabilities in that domain, and may even break the compatibility with previously encoded bitstreams. Addressing these problems, we propose Codec Adaptation without Forgetting (CAwF), a framework that can avoid these problems by adding a small amount of custom parameters, where the source codec remains embedded and unchanged during the adaptation process. Experiments demonstrate its effectiveness and provide useful insights on the characteristics of catastrophic interference in NIC.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes LAMP; 600.120; 600.141; 601.379 Approved no
Call Number Admin @ si @ KHY2021 Serial 3568
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov
Title Slimmable compressive autoencoders for practical neural image compression Type Conference Article
Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal (up)
Volume Issue Pages 4996-5005
Keywords
Abstract Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.120 Approved no
Call Number Admin @ si @ YHC2021 Serial 3569
Permanent link to this record
 

 
Author Arturo Fuentes; F. Javier Sanchez; Thomas Voncina; Jorge Bernal
Title LAMV: Learning to Predict Where Spectators Look in Live Music Performances Type Conference Article
Year 2021 Publication 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal (up)
Volume 5 Issue Pages 500-507
Keywords
Abstract The advent of artificial intelligence has supposed an evolution on how different daily work tasks are performed. The analysis of cultural content has seen a huge boost by the development of computer-assisted methods that allows easy and transparent data access. In our case, we deal with the automation of the production of live shows, like music concerts, aiming to develop a system that can indicate the producer which camera to show based on what each of them is showing. In this context, we consider that is essential to understand where spectators look and what they are interested in so the computational method can learn from this information. The work that we present here shows the results of a first preliminary study in which we compare areas of interest defined by human beings and those indicated by an automatic system. Our system is based on the extraction of motion textures from dynamic Spatio-Temporal Volumes (STV) and then analyzing the patterns by means of texture analysis techniques. We validate our approach over several video sequences that have been labeled by 16 different experts. Our method is able to match those relevant areas identified by the experts, achieving recall scores higher than 80% when a distance of 80 pixels between method and ground truth is considered. Current performance shows promise when detecting abnormal peaks and movement trends.
Address Virtual; February 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MV; ISE; 600.119; Approved no
Call Number Admin @ si @ FSV2021 Serial 3570
Permanent link to this record
 

 
Author Adria Molina; Pau Riba; Lluis Gomez; Oriol Ramos Terrades; Josep Llados
Title Date Estimation in the Wild of Scanned Historical Photos: An Image Retrieval Approach Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal (up)
Volume 12822 Issue Pages 306-320
Keywords
Abstract This paper presents a novel method for date estimation of historical photographs from archival sources. The main contribution is to formulate the date estimation as a retrieval task, where given a query, the retrieved images are ranked in terms of the estimated date similarity. The closer are their embedded representations the closer are their dates. Contrary to the traditional models that design a neural network that learns a classifier or a regressor, we propose a learning objective based on the nDCG ranking metric. We have experimentally evaluated the performance of the method in two different tasks: date estimation and date-sensitive image retrieval, using the DEW public database, overcoming the baseline methods.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number Admin @ si @ MRG2021b Serial 3571
Permanent link to this record
 

 
Author Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados
Title Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal (up)
Volume 12822 Issue Pages 381–395
Keywords
Abstract In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number Admin @ si @ RMG2021 Serial 3572
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal
Title DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis Type Conference Article
Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal (up)
Volume 12823 Issue Pages 555–568
Keywords
Abstract Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.
Address Lausanne; Suissa; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 110.312 Approved no
Call Number Admin @ si @ BRL2021a Serial 3573
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Deep learning-based vegetation index estimation Type Book Chapter
Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Abbreviated Journal (up)
Volume Issue Pages 205-234
Keywords
Abstract Chapter 9
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor A.Solanki; A.Nayyar; M.Naved
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.122 Approved no
Call Number Admin @ si @ SSV2021a Serial 3578
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Cycle Generative Adversarial Network: Towards A Low-Cost Vegetation Index Estimation Type Conference Article
Year 2021 Publication 28th IEEE International Conference on Image Processing Abbreviated Journal (up)
Volume Issue Pages 19-22
Keywords
Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI). The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.
Address Anchorage-Alaska; USA; September 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MSIAU; 600.130; 600.122; 601.349 Approved no
Call Number Admin @ si @ SSV2021b Serial 3579
Permanent link to this record