|   | 
Details
   web
Records
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados
Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type Journal Article
Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal (up) IJDAR
Volume 18 Issue 3 Pages 223-234
Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation
Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2833 ISBN Medium
Area Expedition Conference
Notes DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no
Call Number Admin @ si @ ART2015 Serial 2679
Permanent link to this record
 

 
Author Wenjuan Gong; W.Zhang; Jordi Gonzalez; Y.Ren; Z.Li
Title Enhanced Asymmetric Bilinear Model for Face Recognition Type Journal Article
Year 2015 Publication International Journal of Distributed Sensor Networks Abbreviated Journal (up) IJDSN
Volume Issue Pages Article ID 218514
Keywords
Abstract Bilinear models have been successfully applied to separate two factors, for example, pose variances and different identities in face recognition problems. Asymmetric model is a type of bilinear model which models a system in the most concise way. But seldom there are works exploring the applications of asymmetric bilinear model on face recognition problem with illumination changes. In this work, we propose enhanced asymmetric model for illumination-robust face recognition. Instead of initializing the factor probabilities randomly, we initialize them with nearest neighbor method and optimize them for the test data. Above that, we update the factor model to be identified. We validate the proposed method on a designed data sample and extended Yale B dataset. The experiment results show that the enhanced asymmetric models give promising results and good recognition accuracies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.063; 600.078 Approved no
Call Number Admin @ si @ GZG2015 Serial 2592
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin
Title Mathematics learning opportunities when playing a Tower Defense Game Type Journal
Year 2015 Publication International Journal of Serious Games Abbreviated Journal (up) IJSG
Volume 2 Issue 4 Pages 57-71
Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design
Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076 Approved no
Call Number Admin @ si @ HJG2015 Serial 2730
Permanent link to this record
 

 
Author Ivan Huerta; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez
Title Chromatic shadow detection and tracking for moving foreground segmentation Type Journal Article
Year 2015 Publication Image and Vision Computing Abbreviated Journal (up) IMAVIS
Volume 41 Issue Pages 42-53
Keywords Detecting moving objects; Chromatic shadow detection; Temporal local gradient; Spatial and Temporal brightness and angle distortions; Shadow tracking
Abstract Advanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus a ecting the performance of the nal detection. In this paper we address the detection of both penumbra and umbra shadow regions. First, a novel bottom-up approach is presented based on gradient and colour models, which successfully discriminates between chromatic moving cast shadow regions and those regions detected as moving objects. In essence, those regions corresponding to potential shadows are detected based on edge partitioning and colour statistics. Subsequently (i) temporal similarities between textures and (ii) spatial similarities between chrominance angle and brightness distortions are analysed for each potential shadow region for detecting the umbra shadow regions. Our second contribution re nes even further the segmentation results: a tracking-based top-down approach increases the performance of our bottom-up chromatic shadow detection algorithm by properly correcting non-detected shadows.
To do so, a combination of motion lters in a data association framework exploits the temporal consistency between objects and shadows to increase
the shadow detection rate. Experimental results exceed current state-of-the-
art in shadow accuracy for multiple well-known surveillance image databases which contain di erent shadowed materials and illumination conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078; 600.063 Approved no
Call Number Admin @ si @ HHM2015 Serial 2703
Permanent link to this record
 

 
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio
Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal (up) JMIHI
Volume 5 Issue 2 Pages 192-201
Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY
Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SED2015 Serial 2584
Permanent link to this record
 

 
Author Enric Marti; J.Roncaries; Debora Gil; Aura Hernandez-Sabate; Antoni Gurgui; Ferran Poveda
Title PBL On Line: A proposal for the organization, part-time monitoring and assessment of PBL group activities Type Journal
Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal (up) JOTSE
Volume 5 Issue 2 Pages 87-96
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; ADAS; 600.076; 600.075 Approved no
Call Number Admin @ si @ MRG2015 Serial 2608
Permanent link to this record
 

 
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; J.Roncaries; Debora Gil
Title Automatic evaluation of practices in Moodle for Self Learning in Engineering Type Journal
Year 2015 Publication Journal of Technology and Science Education Abbreviated Journal (up) JOTSE
Volume 5 Issue 2 Pages 97-106
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; DAG; 600.075; 600.077 Approved no
Call Number Admin @ si @ SRM2015 Serial 2610
Permanent link to this record
 

 
Author Jaume Amores
Title MILDE: multiple instance learning by discriminative embedding Type Journal Article
Year 2015 Publication Knowledge and Information Systems Abbreviated Journal (up) KAIS
Volume 42 Issue 2 Pages 381-407
Keywords Multi-instance learning; Codebook; Bag of words
Abstract While the objective of the standard supervised learning problem is to classify feature vectors, in the multiple instance learning problem, the objective is to classify bags, where each bag contains multiple feature vectors. This represents a generalization of the standard problem, and this generalization becomes necessary in many real applications such as drug activity prediction, content-based image retrieval, and others. While the existing paradigms are based on learning the discriminant information either at the instance level or at the bag level, we propose to incorporate both levels of information. This is done by defining a discriminative embedding of the original space based on the responses of cluster-adapted instance classifiers. Results clearly show the advantage of the proposed method over the state of the art, where we tested the performance through a variety of well-known databases that come from real problems, and we also included an analysis of the performance using synthetically generated data.
Address
Corporate Author Thesis
Publisher Springer London Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0219-1377 ISBN Medium
Area Expedition Conference
Notes ADAS; 601.042; 600.057; 600.076 Approved no
Call Number Admin @ si @ Amo2015 Serial 2383
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa
Title Synthetic sequences and ground-truth flow field generation for algorithm validation Type Journal Article
Year 2015 Publication Multimedia Tools and Applications Abbreviated Journal (up) MTAP
Volume 74 Issue 9 Pages 3121-3135
Keywords Ground-truth optical flow; Synthetic sequence; Algorithm validation
Abstract Research in computer vision is advancing by the availability of good datasets that help to improve algorithms, validate results and obtain comparative analysis. The datasets can be real or synthetic. For some of the computer vision problems such as optical flow it is not possible to obtain ground-truth optical flow with high accuracy in natural outdoor real scenarios directly by any sensor, although it is possible to obtain ground-truth data of real scenarios in a laboratory setup with limited motion. In this difficult situation computer graphics offers a viable option for creating realistic virtual scenarios. In the current work we present a framework to design virtual scenes and generate sequences as well as ground-truth flow fields. Particularly, we generate a dataset containing sequences of driving scenarios. The sequences in the dataset vary in different speeds of the on-board vision system, different road textures, complex motion of vehicle and independent moving vehicles in the scene. This dataset enables analyzing and adaptation of existing optical flow methods, and leads to invention of new approaches particularly for driver assistance systems.
Address
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1380-7501 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.055; 601.215; 600.076 Approved no
Call Number Admin @ si @ OnS2014b Serial 2472
Permanent link to this record
 

 
Author Joan M. Nuñez; Jorge Bernal; F. Javier Sanchez; Fernando Vilariño
Title Growing Algorithm for Intersection Detection (GRAID) in branching patterns Type Journal Article
Year 2015 Publication Machine Vision and Applications Abbreviated Journal (up) MVAP
Volume 26 Issue 2 Pages 387-400
Keywords Bifurcation ; Crossroad; Intersection ;Retina ; Vessel
Abstract Analysis of branching structures represents a very important task in fields such as medical diagnosis, road detection or biometrics. Detecting intersection landmarks Becomes crucial when capturing the structure of a branching pattern. We present a very simple geometrical model to describe intersections in branching structures based on two conditions: Bounded Tangency condition (BT) and Shortest Branch (SB) condition. The proposed model precisely sets a geometrical characterization of intersections and allows us to introduce a new unsupervised operator for intersection extraction. We propose an implementation that handles the consequences of digital domain operation that,unlike existing approaches, is not restricted to a particular scale and does not require the computation of the thinned pattern. The new proposal, as well as other existing approaches in the bibliography, are evaluated in a common framework for the first time. The performance analysis is based on two manually segmented image data sets: DRIVE retinal image database and COLON-VESSEL data set, a newly created data set of vascular content in colonoscopy frames. We have created an intersection landmark ground truth for each data set besides comparing our method in the only existing ground truth. Quantitative results confirm that we are able to outperform state-of-the-art performancelevels with the advantage that neither training nor parameter tuning is needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ;SIAI Approved no
Call Number Admin @ si @MBS2015 Serial 2777
Permanent link to this record
 

 
Author Monica Piñol; Angel Sappa; Ricardo Toledo
Title Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy Type Journal Article
Year 2015 Publication Neurocomputing Abbreviated Journal (up) NEUCOM
Volume 150 Issue A Pages 106–115
Keywords Reinforcement learning; Q-learning; Bag of features; Descriptors
Abstract This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.055; 600.076 Approved no
Call Number Admin @ si @ PST2015 Serial 2473
Permanent link to this record
 

 
Author Francisco Alvaro; Francisco Cruz; Joan Andreu Sanchez; Oriol Ramos Terrades; Jose Miguel Benedi
Title Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars Type Journal Article
Year 2015 Publication Neurocomputing Abbreviated Journal (up) NEUCOM
Volume 150 Issue A Pages 147-154
Keywords document image analysis; stochastic context-free grammars; text classi cation features
Abstract In this paper we de ne a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classi cation features are used to perform an initial classi cation of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 601.158; 600.077; 600.061 Approved no
Call Number Admin @ si @ ACS2015 Serial 2531
Permanent link to this record
 

 
Author Daniel Sanchez; Miguel Angel Bautista; Sergio Escalera
Title HuPBA 8k+: Dataset and ECOC-GraphCut based Segmentation of Human Limbs Type Journal Article
Year 2015 Publication Neurocomputing Abbreviated Journal (up) NEUCOM
Volume 150 Issue A Pages 173–188
Keywords Human limb segmentation; ECOC; Graph-Cuts
Abstract Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community because of the huge amount of possible applications in fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task because of the changes in appearance produced by different points of view, clothing, lighting conditions, occlusions, and number of articulations of the human body. Furthermore, this huge pose variability makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8k+ dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than 120000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at frame-level with action annotations drawn from an 11 action dictionary which includes both single person actions and person-person interactive actions. Furthermore, we also propose a two-stage approach for the segmentation of human limbs. In a first stage, human limbs are trained using cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask of the subject by means of GMM color modelling and GraphCuts theory. In a second stage, we embed a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps within the segmented user mask, that are fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation. The methodology is tested on the novel HuPBA8k+ dataset, showing performance improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action recognition methods for the 11 actions categories of the novel dataset is also provided.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ SBE2015 Serial 2552
Permanent link to this record
 

 
Author Manuel Graña; Bogdan Raducanu
Title Special Issue on Bioinspired and knowledge based techniques and applications Type Journal Article
Year 2015 Publication Neurocomputing Abbreviated Journal (up) NEUCOM
Volume Issue Pages 1-3
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; Approved no
Call Number Admin @ si @ GrR2015 Serial 2598
Permanent link to this record
 

 
Author R.A.Bendezu; E.Barba; E.Burri; D.Cisternas; Carolina Malagelada; Santiago Segui; Anna Accarino; S.Quiroga; E.Monclus; I.Navazo
Title Intestinal gas content and distribution in health and in patients with functional gut symptoms Type Journal Article
Year 2015 Publication Neurogastroenterology & Motility Abbreviated Journal (up) NEUMOT
Volume 27 Issue 9 Pages 1249-1257
Keywords
Abstract BACKGROUND:
The precise relation of intestinal gas to symptoms, particularly abdominal bloating and distension remains incompletely elucidated. Our aim was to define the normal values of intestinal gas volume and distribution and to identify abnormalities in relation to functional-type symptoms.
METHODS:
Abdominal computed tomography scans were evaluated in healthy subjects (n = 37) and in patients in three conditions: basal (when they were feeling well; n = 88), during an episode of abdominal distension (n = 82) and after a challenge diet (n = 24). Intestinal gas content and distribution were measured by an original analysis program. Identification of patients outside the normal range was performed by machine learning techniques (one-class classifier). Results are expressed as median (IQR) or mean ± SE, as appropriate.
KEY RESULTS:
In healthy subjects the gut contained 95 (71, 141) mL gas distributed along the entire lumen. No differences were detected between patients studied under asymptomatic basal conditions and healthy subjects. However, either during a spontaneous bloating episode or once challenged with a flatulogenic diet, luminal gas was found to be increased and/or abnormally distributed in about one-fourth of the patients. These patients detected outside the normal range by the classifier exhibited a significantly greater number of abnormal features than those within the normal range (3.7 ± 0.4 vs 0.4 ± 0.1; p < 0.001).
CONCLUSIONS & INFERENCES:
The analysis of a large cohort of subjects using original techniques provides unique and heretofore unavailable information on the volume and distribution of intestinal gas in normal conditions and in relation to functional gastrointestinal symptoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ BBB2015 Serial 2667
Permanent link to this record