| 
Citations
 | 
   web
Marc Oliu, Ciprian Corneanu, Kamal Nasrollahi, Olegs Nikisins, Sergio Escalera, Yunlian Sun, et al. (2016). Improved RGB-D-T based Face Recognition. BIO - IET Biometrics, 5(4), 297–303.
toggle visibility
Ajian Liu, Xuan Li, Jun Wan, Yanyan Liang, Sergio Escalera, Hugo Jair Escalante, et al. (2020). Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review. BIO - IET Biometrics, 10(1), 24–43.
toggle visibility
David Roche, Debora Gil, & Jesus Giraldo. (2013). Mechanistic analysis of the function of agonists and allosteric modulators: Reconciling two-state and operational models. BJP - British Journal of Pharmacology, 169(6), 1189–202.
toggle visibility
Manisha Das, Deep Gupta, Petia Radeva, & Ashwini M. Bakde. (2021). Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid ℓ1 - ℓ0 layer decomposition domain. BSPC - Biomedical Signal Processing and Control, 68, 102535.
toggle visibility
Frederic Sampedro, Sergio Escalera, Anna Domenech, & Ignasi Carrio. (2014). A computational framework for cancer response assessment based on oncological PET-CT scans. CBM - Computers in Biology and Medicine, 55, 92–99.
toggle visibility
Michal Drozdzal, Santiago Segui, Petia Radeva, Carolina Malagelada, Fernando Azpiroz, & Jordi Vitria. (2015). Motility bar: a new tool for motility analysis of endoluminal videos. CBM - Computers in Biology and Medicine, 65, 320–330.
toggle visibility
Santiago Segui, Michal Drozdzal, Guillem Pascual, Petia Radeva, Carolina Malagelada, Fernando Azpiroz, et al. (2016). Generic Feature Learning for Wireless Capsule Endoscopy Analysis. CBM - Computers in Biology and Medicine, 79, 163–172.
toggle visibility
Sumit K. Banchhor, Narendra D. Londhe, Tadashi Araki, Luca Saba, Petia Radeva, Narendra N. Khanna, et al. (2018). Calcium detection, its quantification, and grayscale morphology-based risk stratification using machine learning in multimodality big data coronary and carotid scans: A review. CBM - Computers in Biology and Medicine, 101, 184–198.
toggle visibility
Giuseppe Pezzano, Oliver Diaz, Vicent Ribas Ripoll, & Petia Radeva. (2021). CoLe-CNN+: Context learning – Convolutional neural network for COVID-19-Ground-Glass-Opacities detection and segmentation. CBM - Computers in Biology and Medicine, 136, 104689.
toggle visibility
Henry Velesaca, Patricia Suarez, Raul Mira, & Angel Sappa. (2021). Computer Vision based Food Grain Classification: a Comprehensive Survey. CEA - Computers and Electronics in Agriculture, 187, 106287.
toggle visibility
Eduardo Aguilar, Bhalaji Nagarajan, Beatriz Remeseiro, & Petia Radeva. (2022). Bayesian deep learning for semantic segmentation of food images. CEE - Computers and Electrical Engineering, 103, 108380.
toggle visibility
Naila Murray, Sandra Skaff, Luca Marchesotti, & Florent Perronnin. (2012). Towards automatic and flexible concept transfer. CG - Computers and Graphics, 36(6), 622–634.
toggle visibility
Egils Avots, M. Daneshmanda, Andres Traumann, Sergio Escalera, & G. Anbarjafaria. (2016). Automatic garment retexturing based on infrared information. CG - Computers & Graphics, 59, 28–38.
toggle visibility
Oscar Argudo, Marc Comino, Antonio Chica, Carlos Andujar, & Felipe Lumbreras. (2018). Segmentation of aerial images for plausible detail synthesis. CG - Computers & Graphics, 71, 23–34.
toggle visibility
Enric Marti, Carme Julia, & Debora Gil. (2006). A PBL Experience in the Teaching of Computer Graphics. CGF - Computer Graphics Forum, 25(1), 95–103.
toggle visibility